Diversity and Prevalence of Indigenous Soil Bacillus spp. in the Major Cabbage Growing Agroecological Zones of Uganda

  • Silver Baryakabona Uganda Martyrs University
  • Joseph Ssekandi Kabale University
  • Laban Turyagyenda National Agricultural Research Organization
##plugins.pubIds.doi.readerDisplayName##: https://doi.org/10.37284/eajab.7.2.2234
##share.article##:

Résumé

Different species of genus Bacillus have been reported from different environments of the world. They are reported to play a role of soil fertility improvement, plant growth promotion and disease and pest management. Most of these reports on Bacillus species are from studies conducted outside Uganda and therefore information on the prevalence and diversity of bacillus species in Ugandan soils is scanty. This study aimed at determining the prevalence and diversity of Bacillus spp. isolated from the cabbage rhizosphere in the four major cabbage-growing agroecological zones of Uganda.  The experiment was conducted in a laboratory at the College of Veterinary Medicine, Animal Resources and Biosafety Makerere University for morphological and biochemical identification of the Bacillus bacteria. DNA extraction and PCR were conducted at the College of Natural Resources Makerere University while sequencing was done at Macrogen laboratories in Korea and Inqaba Biotec in South Africa. Morphological, biochemical and genomic analyses revealed five Bacillus spp. (22 Bacillus strains) grouped as B. cereus, B. mycoides, B. thuringiensis, B. megaterium and B. bingmayongensis. B. cereus and B. megaterium were the most dominant and widely spread Bacillus spp. A phylogenetic tree indicated three major clads, showing that B. thuringiensis was closely related to B. cereus while B.bingmayongesis was closely related to B.megaterium. The B. mycoides were closely related to some B. cereus strains and B. bingmayongensis. The phylogenetic tree further showed that some Bacillus strains of the same species were distantly related. It was therefore concluded that most abundant and prevalent Bacillus spp. in Ugandan soils were B. cereus and B. megaterium. The presence and abundance of these bacillus species in the Ugandan soil presents an opportunity for soil scientists to innovatively manipulate them for use as biofertilizers and biopesticides for crop production and management. Such innovations would reduce the reliance of farmers on synthetic fertilizers that are pollutants to the environment and unhealthy to the users and consumers

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

Références

Abriouel, H., Franz, C.M.A.P., Omar, N.B., Gálvez, A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiol. Rev. 2011; 35:201–232. doi: 10.1111/j.1574-6976.2010.00244.x.

Adams, C. H. (2018). The use of Bacillus subtilis De 111 in foods is generally recognized as safe (Gras). Deerland Probiotics and Enzymes 3800 Cobb International Boulevard Kennesaw, GA 30152 USA.

Bashan, Y., de-Bashan, L.E., Prabhu, S.R. and Hernandez, J.P. (2014). Advances in plant growth promoting bacterial inoculant technology: formulations and practical perspectives (1998– 2013). Plant Soil 378, 1–33.

Basurto-Cadena M. G. L., Vázquez-Arista M., García-Jiménez J., Salcedo-Hernández R., Bideshi D. K, Barboza-Corona J. E. (2012). Isolation of a new Mexican strain of Bacillus subtilis with antifungal and antibacterial activities. The Scientific World Journal, Vol.2012. 7 pages Doi:10.1100/2012/384978.

Beauregard, P. B., Chai, Y., Vlamakis, H., Losick, R., and Kolter, R. (2013). Bacillus subtilis biofilm induction by plant polysaccharides. Proc. Natl. Acad. Sci. U.S.A. 110, E1621– E1630. doi: 10.1073/pnas.1218984110

Bergey’s Manual of Determinative Bacteriology (2004). Eds., John G. Holt et al., 9thedn. The Williams and Wilkins, Baltimore. pp. 531-532

Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E., Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807–838.

Cagri-Mehmetoglu, A. Kusakli, S., Van de Venter, M. (2012). Production of polysaccharide and surfactin by Bacillus subtilis ATCC 6633 using rehydrated whey powder as the fermentation medium. J. Dairy Sci. 9 5: 3643–3649 http://dx.doi.org/1. 0.3168/jds.2012-5385. American Dairy Science Association.

Chauhan, A., Jindal, T. (2020). Biochemical and Molecular Methods for Bacterial Identification. In: Microbiological Methods for Environment, Food and Pharmaceutical Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-52024-3_10

Cherif-Silini, H., Silini, A., Yahiaoui, B. et al. (2016). Phylogenetic and plant-growth-promoting characteristics of Bacillus isolated from the wheat rhizosphere. Ann Microbiol 66, 1087– 1097.

Chen, Y., Neilson, J.W., Kushwaha, P. et al. (2021). Life-history strategies of soil microbial communities in an arid ecosystem. ISME J 15, 649–657. https://doi.org/10.1038/s41396-020-00803-y

Chilcott, C.N., Wigley, P.J. (1993). Isolation and toxicity of Bacillus thuringiensis from soil and insect habitats in New Zealand. J. Invertebr. Pathol. 61:244–247. doi: 10.1006/jipa.1993.1047

DEFRA., (2005). Impact of climate change on soil functions. Final Project Report, Research and Development, London, UK.

Ehling-Schulz, M., Fricker, M., Scherer, S. (2004). Bacillus cereus, the causative agent of an emetic type of food-borne illness. Mol. Nutr. Food Res.; 48:479–487.

El-Gayar, K., Essa, A.M., Abada, E.A. (2020). Whey Fermentation for Protease Production Using Bacillus thuringiensis Isolated from Mangrove Rhizosphere Soil in Jazan, Saudi Arabia, Pol. J. Environ. Stud. Vol. 29, No. 3 (2020), 2167- 2176. DOI: 10.15244/pjoes/110583

Fan, B., Wang, C., Song, X., Ding, X., Wu, L., Wu, H., Gao, X. and Borriss, R. (2018). Bacillus velezensis FZB42 in 2018: The Gram-positive model strain for plant growth promotion and biocontrol. Front Microbiol 9, 2491

Farina, R., Beneduzi, A., Ambrosini, A. (2012). Diversity of plant growth-promoting rhizobacteria communities associated with the stages of canola growth. Appl Soil Ecol., 55: 44-52.

Festing M. F. W. (2014). Randomized Block Experimental Designs Can Increase the Power and Reproducibility of Laboratory Animal Experiments. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. ILAR Journal, Volume 55, Number 3, doi: 10.1093/ilar/ilu045.

Filippi, M. C. C., Da Silva, G. B., Silva-Lobo, V. L., Côrtes, M. V. C., Moraes, A. J. G., and

Prabhu, A. S. (2011). Leaf blast (Magnaporthe oryzae) suppression and growth promotion by rhizobacteria on aerobic rice in Brazil. Biol. Control 58, 160–166.doi: 10.1016/j.biocontrol.2011.04.016

Frikha-Gargouri, O., Ben Abdallah, D., Bhar, I., and Tounsi, S. (2017). Antibiosis and bmyB gene presence as prevalent traits for the selection of efficient Bacillus biocontrol agents against crown gall disease. Front. Plant Sci. 8:1363. doi: 10.3389/fpls.2017.01363

Ge CB, Zheng, R., Liu, B., Liu, G.H., Che, J.M, Tang, J.Y. (2016). Diversity and distribution of cultivable Bacillus-like species in soils collected from Wuyishan Nature Reserve. Biodivers Sci 24: 1164- 1176. DOI: 10.17520/ biods.2016085.

Goswami, D., Thakker, J.N. and Dhandhukia, P.C. (2016). Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2, 1127500.

Hayat R., Ali S., Amara U., Khalid R., Ahmed I. (2010). Soil beneficial bacteria and their role in plant growth promotion: A review. Ann. Microbiol. 2010; 60:579–598.

Hirsch, P. R. (2018). Soil microorganisms: role in soil health. in: Reicosky, D. (ed.) Managing Soil Health for Sustainable Agriculture. Volume 1: Fundamentals Cambridge, UK Burleigh Dodds. pp. 169-196.

Kang, S. M., Radhakrishnan, R., and Lee, I. J. (2015b). Bacillus amyloliquefaciens subsp. plantarum GR53, a potent biocontrol agent resists Rhizoctonia disease on Chinese cabbage through hormonal and antioxidants regulation. World J. Microbiol. Biotechnol. 31, 1517–1527. doi: 10.1007/s11274-015-1896-0

Longan N.A., Halket, G. (2011). Developments in the taxonomy of aerobic, endospores-forming bacteria, in: Endospore-forming soil Bacteria. Longan and De Vos (Eds). Espirnger-Verlag, German.

Lyngwi, N. A., Joshi, S. R. (2014). Economically important Bacillus and related genera: a mini review. in Biology of Useful Plants and Microbes. ed Sen A. (New Delhi: Narosa Publishing House;), 33–43.

Mandic-Mulec, I., Stefanic, P., and van Elsas, J. D. (2016). “Ecology of Bacillaceae,” in The Bacterial Spore: From Molecules to Systems, eds P. Eichenberger and A. Driks (Washington, DC: ASM Press), 59–85.

Majed, R., Faille, C., Kallassy, M., and Gohar, M. (2016). Bacillus cereus biofilms—same, only different. Front. Microbiol. 7:1054. doi: 10.3389/FMICB.2016.01054

Marwa M. Bakri (2023). Molecular characterization and prevalence of Bacillus species isolated from Saudi hospitals. Journal of Taibah University Medical Sciences. Volume 18, Issue 3, June 2023, Pages 444-454

Mascarin GM, Jaronski ST (2016). The production and uses of Beauveria bassiana as a microbial insecticide. World J Microbiol Biotechnol 32:177–188.

Motsara, M.R., Roy, R.N. (2008). Guide to laboratory establishment for plant nutrient analysis. Food and Agriculture Organization of the United Nations Rome, Italy.

Nicholson, W.L. (2002). Roles of Bacillus endospores in the environment. Cell Mol Life Sci 59:410–416.

Pavlovska, M., Prekrasna, I., Parnikoza, I., and Dykyi, E. (2021). Soil Sample Preservation Strategy Affects the Microbial Community Structure. Microbes Environ 36: ME20134.

https://doi.org/10.1264/jsme2.ME2013

Pérez-García, A., Romero, D., De Vicente, A. (2011). Plant protection and growth stimulation by microorganisms: Biotechnological applications of Bacilli in agriculture. Curr. Opin. Biotechnol. 2011; 22:187–193. doi: 10.1016/j.copbio.2010.12.003.

Qiao JQ, Wu HJ, Rong Huo R, Gao XW, Borriss R (2014). Stimulation of plant growth and biocontrol by Bacillus amyloliquefaciens subsp. plantarum FZB42 engineered for improved action. Chemical and Biological Technologies in Agriculture 1:12

Rodrigo, M., Paolina, G., Jos, M.R. (2013). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, Volume 37, Issue 5, September 2013, Pages 634– 663, https://doi.org/10.1111/1574-6976.12028. Oxford.

Rousk J., Baath E., Brookes P.C., Lauber C.L., Lozupone C., Caporaso J.G., Knight R., Fierer N. (2010). Soil bacterial and fungal communities across a pH gradient in an arablesoil. ISME J. 2010;4:1340–1351. doi: 10.1038/ismej.2010.58.

Salkind, N. (2010). Research Methods. Completely Randomized Design. SAGE Publishers. DOI: https://dx.doi.org/10.4135/9781412961288.n64

Saxena, A.K., Kumar1, M., Chakdar1, H., Anuroopa, N., and Bagyara, D.J (2020). Bacillus species in soil as a natural resource for plant health and nutrition. Journal of Applied Microbiology ISSN 1364-5072.

Senthilkumar, M., Swarnlakshmi, K., Govindasamy, V., Lee, Y.K., Annapurna, K. (2009). Biocontrol potential of soybean bacterial endophytes against charcoal rot fungus Rhizoctonia bataticola. Curr Microbiol, 58: 288-93

Spencer, R. C. (2003). Bacillus anthracis. J. Clin. Pathol. 56, 182–187. 10.1136/jcp.56.3.182

Sindhu SS, Parmar P, Phour M, Kumari K (2014). Rhizosphere microorganisms for improvement in soil fertility and plant growth. In: Nagpal R, Kumar A, Singh R (eds) Microbes in the service of mankind: tiny bugs with huge impact. JBC Press, New Delhi, pp 32–9.

Tabbene, O., Ben Slimene I., Bouabdallah F., Mangoni M.-L., Urdaci M.-C., Limam F. (2009). Production of anti-methicillin-resistant Staphylococcus activity from Bacillus subtilis sp. strain B38 newly isolated from soil. Appl. Biochem. Biotechnol. 2009; 157:407–419. doi: 10.1007/s12010-008-8277-1

Tahir, M., Mirza, M.S., Hameed, S., Dimitrov, M.R., Smidt, H. (2015). Cultivation-based and molecular assessment of bacterial diversity in the rhizosheath of wheat under different crop rotations. PLoS ONE, 10: p. e0130030.

Wattiau, P., Renard, M.E, Ledent, P., Debois, V., Blackman, G., Agathos, S.N. (2001). A PCR test to identify Bacillus subtilis and closely related species and its application to the monitoring of wastewater biotreatment. Appl Microbiol. Biotechnol (2001) 56:816–819. DOI 10.1007/s002530100691

Zhang, J. X., Xue, A. G., Tambong, J. T. (2009). Evaluation of seed and soil treatments with novel Bacillus subtilis strains for control of soybean root rot caused by Fusarium oxysporum and F. graminearum. Plant Dis. 93(12):1317-1323.

Zhang, R., Vivanco, J.M. & Shen, Q. (2017). The unseen rhizosphere root–soil–microbe interactions for crop production. Current Opinion in Microbiology, 37, 8–14.

Zhang, C., Wang, J., Zhu, L., Du, Z., Wang, J., Sun, X., et al. (2018). Effects of 1-octyl-3-methylimidazolium nitrate on the microbes in brown soil. J. Environ. Sci. 67, 249–259. doi: 10.1016/j.jes.2017.09.002

Publiée
25 septembre, 2024