Utilization of Black Soldier Fly and Housefly as Biodegradation Agents of Dairy Wastes and source of Animal Feed
Abstract
Accumulation of dairy wastes and shortage of nutritious feed remain the major challenges in dairy cattle production. Such wastes may sustainably be biodegraded by black soldier fly (BSF) larvae and housefly (HF) larvae into their which ca be used as animal feed. This study was done to compare the capacity of using black soldier fly larvae (BSFL) and housefly larvae (HFL) to manage dairy wastes and use of such larvae as livestock feed. Biomass reduction rate, biomass reduction index, bioconversion rate, feed conversion ratio and nutritional profile of resultant BSF and HF prepupae raised on cow dung (CD) and dairy shed effluent (DSE) were determined. In order to ascertain whether the substrates had an effect on BSFL and HFL, analysis of variance (ANOVA) was used, and multiple mean comparisons at P≤0.05 were done using the Tukey HSD post-hoc test. Housefly larvae reared on DSE had the highest biomass reduction rate and biomass reduction index, even though HFL had a shorter development time than BSFL (P≤0.05). Housefly prepupae reared on DSE had the highest crude protein content of 60.1 % of all the HF prepupae counterparts and BSF prepupae reared on DSE and CD (P≤0.05), Hence HF prepupae could be an alternative source of animal feed. Depending on the needs and purpose, utilization of fly larvae to manage dairy waste is viable and effective option
Downloads
References
AOAC. (1998). AOAC (1998) Official Methods of Analysis. 16th Edition, Association of Official Analytical Chemists, Arlington. - References - Scientific Research Publishing.
Awasthi, A. K., Hasan, M., Mishra, Y. K., Pandey, A. K., Tiwary, B. N., Kuhad, R. C., Gupta, V. K., & Thakur, V. K. (2019). Environmentally sound system for E-waste: Biotechnological perspectives. Current Research in Biotechnology, 1, 58–64. https://doi.org/10.1016/J.CRBIOT.2019.10.002
Banks, Ian J., Gibson, W. T., & Cameron, M. M. (2014). Growth rates of black soldier fly larvae fed on fresh human faeces and their implication for improving sanitation. Tropical Medicine and International Health, 19(1), 14–22. https://doi.org/10.1111/TMI.12228
Biasato, I., Ferrocino, I., Dabbou, S., Evangelista, R., Gai, F., Gasco, L., Cocolin, L., Capucchio, M. T., & Schiavone, A. (2020). Black soldier fly and gut health in broiler chickens: insights into the relationship between cecal microbiota and intestinal mucin composition. Journal of Animal Science and Biotechnology, 11(1). https://doi.org/10.1186/S40104-019-0413-Y
Brits, D. (2017). (PDF) Improving feeding efficiencies of black soldier fly larvae, Hermetia illucens (L., 1758) (Diptera: Stratiomyidae: Hermetiinae) through manipulation of feeding conditions for industrial mass rearing.
Čičková, H., GL, N., RC, L., & M, K. (2015). The use of fly larvae for organic waste treatment. Waste Management (New York, N.Y.), 35, 68–80. https://doi.org/10.1016/J.WASMAN.2014.09.026
Clauss, M., Steuer, P., Müller, D. W. H., Codron, D., & Hummel, J. (2013). Herbivory and Body Size: Allometries of Diet Quality and Gastrointestinal Physiology, and Implications for Herbivore Ecology and Dinosaur Gigantism. PLoS ONE, 8(10). https://doi.org/10.1371/JOURNAL.PONE.0068714
Diener, S., C, Z., & K, T. (2009). Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates. Waste Management & Research : The Journal of the International Solid Wastes and Public Cleansing Association, ISWA, 27(6), 603–610. https://doi.org/10.1177/0734242X09103838
Fan, B., Yang, W., & Shen, X. (2019). A comparison study of ‘motivation–intention–behavior’ model on household solid waste sorting in China and Singapore. Journal of Cleaner Production, 211, 442–454. https://doi.org/10.1016/J.JCLEPRO.2018.11.168
FAO. (2018). Africa Sustainable Livestock 2050. Livestock and Livelihoods spotlight Kenya: Cattle and poultry sectors. 1–12. www.fao.org/3/I8978EN/i8978en.pdf
Fyfe, J., Hagare, D., & Sivakumar, M. (2016). Dairy shed effluent treatment and recycling: Effluent characteristics and performance. Journal of Environmental Management, 180, 133– 146. https://doi.org/10.1016/j.jenvman.2016.04.058
Gasco, L., Finke, M., & van Huis, A. (2018). Can diets containing insects promote animal health? Journal of Insects as Food and Feed, 4(1), 1– 4. https://doi.org/10.3920/JIFF2018.x001
Gold, M., Tomberlin, J. K., Diener, S., Zurbrügg, C., & Mathys, A. (2018). Decomposition of biowaste macronutrients, microbes, and chemicals in black soldier fly larval treatment: A review. Waste Management, 82, 302– 318. https://doi.org/10.1016/J.WASMAN.2018.10.022
Hasan, M. R. (2001). Nutrition and Feeding for Sustainable Aquaculture Development in the Third Millennium. https://www.fao.org/3/ab412e/ab412e10.htm
Heuel, M., Sandrock, C., Leiber, F., Mathys, A., Gold, M., Zurbrügg, C., Gangnat, I. D. M., Kreuzer, M., & Terranova, M. (2021). Black soldier fly larvae meal and fat can completely replace soybean cake and oil in diets for laying hens. Poultry Science, 100(4), 101034. https://doi.org/10.1016/J.PSJ.2021.101034
Joly, G. (2018). Valorising Organic Waste using the Black Soldier Fly (Hermetia illucens), in Ghana. Trita-Abe-Mbt Nv - 1811, Independen, 103. http://kth.diva-portal.org/smash/get/diva2:1196375/FULLTEXT01.pdf%0Ahttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-225841
Jucker, C., Lupi, D., Moore, C. D., Leonardi, M. G., & Savoldelli, S. (2020). Nutrient recapture from insect farm waste: Bioconversion with hermetia illucens (L.) (Diptera: Stratiomyidae). Sustainability (Switzerland), 12(1), 1– 14. https://doi.org/10.3390/su12010362
Khan, S., Khan, R. U., Sultan, A., Khan, M., Hayat, S. U., & Shahid, M. S. (2016). Evaluating the suitability of maggot meal as a partial substitute of soya bean on the productive traits, digestibility indices and organoleptic properties of broiler meat. Journal of Animal Physiology and Animal Nutrition, 100(4), 649–656. https://doi.org/10.1111/JPN.12419
Kierończyk, B., Sypniewski, J., Rawski, M., Czekała, W., Swiatkiewicz, S., & Józefiak, D. (2020). From Waste to Sustainable Feed Material: The Effect of Hermetia Illucens Oil on the Growth Performance, Nutrient Digestibility, and Gastrointestinal Tract Morphometry of Broiler Chickens. Annals of Animal Science, 20(1), 157–177. https://doi.org/10.2478/AOAS-2019-0066
KNBS. (2019). Livestock Population by Type and District, Kenya 2019 - knoema.com. https://knoema.com/KELP2020/livestock-population-by-type-and-district-kenya-2019
Kong, L.-C., Wang, B., Wang, Y.-M., Hu, R.-G., Atiewin, A., Gao, D., Gao, Y.-H., & Ma, H.-X. (n.d.). Characterization of bacterial community changes and antibiotic resistance genes in lamb manure of different incidence.https://doi.org/10.1038/s41598-019-46604-y
Manurung, R., Supriatna, A., Esyanthi, R. R., & Putra, R. E. (2016). Optimal feed rate for biomass production. ~ 1036 ~ Journal of Entomology and Zoology Studies, 4(4), 1036–1041.
Myers, H. M., Tomberlin, J. K., Lambert, B. D., & Kattes, D. (2008). Development of black soldier fly (Diptera: Stratiomyidae) larvae fed dairy manure. Environmental Entomology, 37(1), 11–15. https://doi.org/10.1603/0046-225X(2008)37[11:DOBSFD]2.0.CO;2
Nana, P., Kimpara, J. M., Tiambo, C. K., Tiogue, C. T., Youmbi, J., Choundong, B., & Fonkou, T. (2019). Black soldier flies (Hermetia illucens Linnaeus) as recyclers of organic waste and possible livestock feed. International Journal of Biological and Chemical Sciences, 12(5), 2004. https://doi.org/10.4314/ijbcs.v12i5.4
Nayduch, D., & Burrus, R. G. (2017). Flourishing in filth: House fly-microbe interactions across life history. Annals of the Entomological Society of America, 110(1), 6–18. https://doi.org/10.1093/aesa/saw083
Newton, L., Sheppard, C., Watson, D. W., & Burtle, G. (2005). USING THE BLACK SOLDIER FLY, Hermetia illucens, AS A VALUE-ADDED TOOL FOR THE MANAGEMENT OF SWINE MANURE.
Nyakeri, E. M. (2018). Title Optimization of production of black soldier larvae (Hermetia illucens. Biomass Chem Eng, 3(2), 130.
Nyakeri, E. M., Ayieko, M. A., Amimo, F. A., Salum, H., & Ogola, H. J. O. (2019). An optimal feeding strategy for black soldier fly larvae biomass production and faecal sludge reduction. Journal of Insects as Food and Feed, 5(3), 201–213. https://doi.org/10.3920/JIFF2018.0017
Nyakeri, E. M., Ogola, H. J. O., Ayieko, M. A., & Amimo, F. A. (2017). Valorisation of organic waste material: Growth performance of wild black soldier fly larvae (Hermetia illucens) reared on different organic wastes. Journal of Insects as Food and Feed, 3(3), 193–202. https://doi.org/10.3920/JIFF2017.0004
Ong, S.-Q., Lee, B.-B., Tan, G.-P., & Maniam, S. (2017). Capacity of black soldier fly and house fly larvae in treating the wasted rice in Malaysia. Malaysian Journal of Sustainable Agricultural, 1(1), 08– 10. https://doi.org/10.26480/MJSA.01.2017.08.10
Oonincx, D. G. A. B., Van Broekhoven, S., Van Huis, A., & Van Loon, J. J. A. (2015). Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS ONE, 10(12). https://doi.org/10.1371/JOURNAL.PONE.0144601
Ravindran, B., Nguyen, D. D., Chaudhary, D. K., Chang, S. W., Kim, J., Lee, S. R., Shin, J. Du, Jeon, B. H., Chung, S. J., & Lee, J. J. (2019). Influence of biochar on physico-chemical and microbial community during swine manure composting process. Journal of Environmental Management, 232, 592–599. https://doi.org/10.1016/J.JENVMAN.2018.11.119
Schiavone, A., De Marco, M., Martínez, S., Dabbou, S., Renna, M., Madrid, J., Hernandez, F., Rotolo, L., Costa, P., Gai, F., & Gasco, L. (n.d.). Journal of Animal Science and Biotechnology. https://doi.org/10.1186/s40104-017-0181-5
Tschirner, M., & Simon, A. (2015). Influence of different growing substrates and processing on the nutrient composition of black soldier fly larvae destined for animal feed. Journal of Insects as Food and Feed, 1(4), 249–259. https://doi.org/10.3920/JIFF2014.0008
Veldkamp et al., 2012. Rapport 638 - Wageningen Livestock Research | Feedipedia. (n.d.). from https://www.feedipedia.org/node/17025
Zheng, L., Hou, Y., Li, W., Yang, S., Li, Q., & Yu, Z. (2012). Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes. Energy, 47(1), 225– 229. https://doi.org/10.1016/J.ENERGY.2012.09.006
Copyright (c) 2024 Benjamin Muthama Kilonzi, Darius Otiato Andika, PhD, Collins Khalwale Mweresa, PhD

This work is licensed under a Creative Commons Attribution 4.0 International License.