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ABSTRACT 

As the charging current and surrounding temperatures rise concurrently in an 

electric vehicle's (EV) battery pack, the battery temperature increases abruptly 

beyond safe limits. The battery is susceptible to triggering thermal runaway at 

higher temperatures, leading to battery damage and even an explosion. The 

control system depends on these measurement data from the sensors to prevent 

dangerous situations and maximize the performance and cycle life of batteries. 

However, traditional noisy temperature measurement sensors in a real 

application, such as thermistors and thermocouples, are extensively used. In 

this paper, the experimental setup, the heat pipe-based battery thermal 

management system (BTMS) was designed and experimented with high input 

power. The battery was sandwiched with heat pipes, and heated at 30, 40, 50, 

and 60 W. The Savitzky-Golay filter technique is applied to the noisy 

temperature data of the surface temperature of the lithium-ion batteries (LIBs) 

used to estimate the condition of the battery. According to this study, the start-

up time parameter in battery thermal management can be controlled by the 

Savitzky-Golay filter. This will attenuate random temperature fluctuations of 

battery temperature noise and avoid the cooling system from being falsely 

triggered. The results are measured by the signal-to-noise (SNR) to 

demonstrate the ability of the Savitzky-Golay filter to eliminate noise. 
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INTRODUCTION 

There are different types of batteries nowadays. 

However, most electric vehicles (EVs) and 

various storage systems use Lithium-ion batteries 

(LIBs) [1-4]. Many of the attractive features of 

LIBs include high current, power, energy density, 

prolonged life cycle, no memory effect, and low 

self-discharge rate [5-8]. However, LIBs remain 

prone to thermal runaway, fire, and high 

temperatures [9]. The battery capacity is 

estimated based on the battery surface 

temperature change [10] and the performance of 

LIBs depends on the working temperature. Most 

of the temperature effects are related to chemical 

reactions occurring in the batteries and also to the 

materials used in the batteries [11]. The 

temperature generated during the time of 

discharging and charging, and the environmental 

temperature cause the destruction of the battery 

[12]. Therefore, to maximize the battery service 

life, the battery temperature must be monitored 

[13, 14]. The estimation of the state of health 

(SoH) of a Li-ion is of great significance to system 

safety and economic development [15, 16].  

A battery thermal management system (BTMS) is 

an electronic device for controlling rechargeable 

batteries (battery packs or cells). It is a data-driven 

system, and one of the most important 

components of a battery management system 

(BMS) that ensures the cell capacity and 

longevity, system safety, and efficiency of battery 

performance. Therefore, temperature 

measurements are vital measurements during the 

estimation of the suitable operation, thermal 

safety in application, and condition of the battery. 

For a proper selection of the temperature 

measurement method, aspects such as 

measurement range, accuracy, resolution, and 

costs of the method are important. Other non-

invasive measurements are the battery terminal 

voltage, the current, humidity, and the physical 

expansion of battery cells. Among all, 

temperature significantly affects capacity, 

voltage, internal resistance, discharge/charge 

state, lifetime, safety, and inhomogeneity [17]. 

Although the chemical reaction is faster when the 

temperature rises in the battery, the thermal 

runaway occurs, the chemicals get lost and this 

decreases the life of a battery. Similarly, when the 

temperature is low the chemical may freeze. 

Because of that, BTMS requires temperature-

changing data accuracy at the rate of 1/s (1 Hz). 

The BTMS systems are utilized to improve the 

battery efficiency, by keeping the battery 

temperature within desired ranges and 

guaranteeing the allowable temperature limits for 

the battery pack. To protect batteries from 

potential damage, the excess temperature must be 

closely monitored to avoid any possibility of 

leakage or any cause of fire. Hence, the battery 

management depends on the estimation of the 

internal temperature. Both high and low 

temperatures have important effects on the SoH of 

LIBs [15, 16]. Due to the heterogeneous internal 

resistances of cells, heat generations are different 

and there are thermal gradients within the battery 

pack. In general, cell degradation is faster at 

higher temperatures [10]. The operating 

temperature of various types of batteries is shown 

in Table 1. The reliable and safe performance of 

the working temperature should be in the range of 

15-35◦C [11, 18]. Under typical conditions, the 

temperature differences between the battery 

surface and core can be 10 K or more [19]. The 

internal or the core temperature is always beyond 

the surface temperature such that before the 

surface temperature reaches the temperature limit, 

the core temperature is already beyond the limit.

 

Table 1:  Temperature ranges for different power batteries [17, 20].  

 

 

 

 

Battery type Operating temperature (oC) Cycle life 

Nickel Cadmium (Ni–Cd) −20~50 °C >800 

Nickel-Metal Hydride (Ni–MH) −20~60 °C >800 

Lead Acid −10~50 °C >300 

Lithium Ion (Li-ion) −20~60 °C >1000 
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Core temperature simultaneous estimation is 

necessary for BMS to diagnose thermal runaway 

reactions and protect batteries from potential 

damage. The charger reduces the voltage supply 

to ensure peak charging when the battery 

temperature is high to avoid overheating. 

Similarly, during low temperatures, the charger 

uses a higher voltage to the battery to offset the 

increased resistance caused by the low 

temperature [10, 21]. The BTMS consists of 

temperature sensors across the surface of a battery 

pack, cooling systems, and heating systems in 

heat transport from or to the battery cells. Cooling 

systems use air; either forced where fans are used 

to induce airflow or natural air cooling where 

natural air cooling is used [22]. Air thermal 

management is less expensive and requires 

minimum space [23]. Unless a well-designed and 

arranged channel and cooling system has low 

thermal conductivity of air. However, air as a 

thermal management medium suffers from low 

heat capacity when it comes to managing large 

battery packs. Liquids, on the other hand, possess 

much higher heat capacity than air [24]. Direct 

liquid cooling is where batteries are kept in direct 

contact with the liquid coolant and indirect 

cooling is where the coolant flows in tubes, cold 

plates, or jackets that are in contact with the 

surface of the batteries. Applications of direct 

cooling strategy are used in high-performance 

vehicles where indirect cooling systems are used 

where safety and state of health requirements are 

high such as in passenger electric vehicles. 

Although the liquid cooling systems require a 

more complex design, they ensure the cells 

operate within the temperature limits. On the other 

hand, phase change materials (PCMs) can 

regulate heat since they undergo a phase change 

and absorb heat energy as a result. During the 

temperature drops, the phase change reverses and 

the PCM releases heat. This approach is used for 

thermal management in buildings, and electric 

vehicles (EVs). However, PCMs have low 

thermal conductivity but can be improved by 

mixing nanoparticles with pure PCM. Pure PCM-

based system performance can be further 

improved by using it with some active cooling 

techniques such as forced air cooling for 

cylindrical batteries.  

Generally, the temperature and/or voltage 

measurements contain noises in a real application, 

and these interferences will be further amplified 

by the differential operation if the adopted voltage 

interval is too small. Most of the presented work 

use different types of filter namely; the Savitzky-

Golay filter [25, 26], dual filtering [25, 26], least 

square moving window [27], Kalman filter [28] 

and recursive least squares (RLS) [6] to improve 

signal to noise ratio in the in the voltage contain 

noise and minimizing error in on state of charge 

estimation. Thus, to prevent the cooling system 

from activating incorrectly, no study has shown 

how to use a Savitzky-Golay filter to smooth the 

battery's maximum temperature and surface 

temperature. Note that the startup time is the 

crucial factor influencing battery thermal 

management performance. The "Start Time" 

parameter indicates that a delay should be applied 

before the battery is cooled up [29]. If the start-up 

time is not taken into account, the lithium-ion 

battery will overcool, which will cause the 

diffusion process of the Li-ion battery to slow 

down and its chemical reaction to deaccelerate 

[29]. The sensor needs to be mounted on the 

battery surface in order to automate this kind of 

procedure. The cooling system is turned on by the 

controller after receiving a signal from the sensor. 

But when the electric car is moving, the noise will 

have a significant impact on it. This will lead to 

erratic variations in the temperature difference 

and surface temperature, which will cause the 

cooling system to be falsely triggered or activated.  

METHODOLOGY   

Theoretical formulation  

Nevertheless, no study has tackled this problem 

and suggested the Savitzky-Golay filter to reduce 

the impact of noise without altering the original 

signal, according to the review conducted by 

researchers. Furthermore, the Savitzky-Golay 

filter can keep the waveform's peak and shape. 

The noise from the Savitzky-Golay filtering of the 

LIB surface temperature is filtered in this article 

by adjusting the Savitzky-Golay filter.The 
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Savitzky-Golay filters are a type of Finite Impulse 

Response (FIR) digital filter derived directly from 

a particular formulation of the data smoothing 

problem in the time domain [30, 31]. The filtering 

process forms the least squares polynomials 

fitting the data where the number of sampling 

points considered in a group is defined by the 

window size parameter while controlling the order 

of the used polynomial [32, 33]. The mathematical 

description of the smoothing process 

implemented by Savitzky-Golay filtering is 

expressed by (1) [34-37]. 

                                           (1) 

where s is the original signal, s* is the smoothed 

signal, cx is the coefficient for the xth smoothing, 

N is the number of data points in the smoothing 

window, and is equal to 2m+1, and m is the half-

width of the smoothing window. The index j 

represents the running index of the ordinate data 

in the original data table. 

The essence of Savitzky-Golay filtering is 

adopting a polynomial in a sliding window to fit 

the original signal piece-by-piece depending on 

the least-squares estimation algorithm. The 

polynomial can be modelled as shown in (2) [33]. 

Given a set of 2m+1 data values, the polynomial 

of n degree that satisfies the least squares fit of 

these values is expressed as [37]. 

                                                    

            2) 

where bn is the coefficient of the polynomial, k is 

the polynomial degree. 

The coefficient of the polynomial, bn is obtained 

by applying the least-squares criterion expressed 

by (3). 

  3) 

The b0 is obtained by evaluating the (2) at x = 0, 

then bn are obtained by computing the nth 

differential of (2) at . Hence,  

    (4) 

where n is the derivative order,  is the 

convolution weight, and sx is the value of the xth 

point. 

The signal-to-ratio (SNR) is the qualitative 

measure of the level the noise present in the 

signal. SNR can be computed statistically as an 

expression shown in (5). 

 (5) 

Experimental setup and procedures 

The setup diagram of the experiment is shown in 

Fig. 1. The composition includes an AC power 

supply, water pump, flow meter, re-circulating 

bath, and data logger. Using polyimide film (tape) 

the thermocouple is affixed. Data from the 

thermocouple on the LIBs are collected by the 

microcontroller-based data logger and 

communicated to the PC through the interface. 

Experimental setup 

The heating and cooling control is used to 

maintain the temperature at 30 ◦C. Heat generation 

inside the battery was set to 30, 40, 50, and 60 W 

and was controlled by an AC power supply. In this 

study, the heat generation rate (Qin) inside the 

aluminium plate depended on the input power of 

the heater, which could be controlled within the 

desired range. T-type thermocouples were used to 

measure the battery surface temperatures and the 

temperature of the inlet and outlet water. A data 

logger was used to collect temperatures from the 

battery surface at a sampling rate of 1 Hz. 
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Fig. 1: Schematic diagram of the experimental setup 

 

Experimental procedures 

Initially, the temperature was maintained at 30 ◦C 

and then a heater was initiated at the power of 30 

W. The temperature on the surface of the battery 

and the temperature of the inlet and outlet water 

were recorded.  The heater was changed to 40 W, 

50 W, and 60 W after every 2 hours while 

recording the surface temperatures. The heat 

generation rate (Qin) inside the aluminium plate is 

expressed as shown in (6) [5]. 

                                     (6) 

where V is the voltage applied to the heater (V) 

and I is the current supplied to the heater rod (A). 

Heat dissipation  

Heat dissipated as heat radiation and heat 

convection (transferred to water), (Qw) can be 

expressed as shown in Eqn. (7) [1, 5]. 

  (7) 

where mw is the water mass flow rate (kg/s), cp is 

the specific heat of water (J/kg K), Tw, out is the 

outlet water temperature (◦C), and Tw, in is the inlet 

water temperature (◦C). 

The mass flow rate is expressed as shown in Eqn. 

(8) 

    (8) 

where q is the water flow rate (m3/s), and ρ is the 

density of water (kg/m3).    

RESULTS AND DISCUSSION 

In this research work, the experiment shows that 

input power and water flow rate affect the 

maximum temperature (Tmax), the minimum 

temperature (Tmin), and the temperature difference 

(∆T). The data were measured over one hour per 

each input power which were varied in the 

sequence of 30 W, 40 W, 50 W, and 60 W. The 

results in Fig. 2(a) and (b) show that as input 

power increases, the maximum battery surface 

temperature increases. The raw data has a 

maximum temperature of about 60 ˚C, 

meanwhile, the temperature difference rises to 7 

˚C. Again, the reported findings in Fig. 2(a) and 

(b) reveal that the raw data are impacted by noise, 

as evidenced by the random variation of the 

maximum temperature. Fig. 2 also demonstrates 

that without a Savitzky-Golay filter, the 

maximum temperature on the battery surface rises 

to roughly 61.20˚C, with a maximum temperature 

 

inQ V I= 

, ,( )w p w out w inWQ m c T T= −

wm q=
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difference of 7 ˚C. The filter limits the maximum 

temperature difference to around 6˚C and the 

maximum battery temperature to 60.00 ˚C. The 

results show that without the Savitzky-Golay 

filter, the recorded maximum temperature and 

temperature difference result in an incorrect 

average temperature of ±1˚C. Deviations of ±1˚C 

are unacceptable for lithium-ion battery BMTS 

since they can cause false alarm triggering and 

BTMS actuation before the start-up time. It should 

be noted that the BTMS system should not be 

activated to cool the battery immediately after 

start-up since the heat has not yet accumulated. In 

the IOT-based BTMS monitoring system, a low 

signal-to-noise ratio increases the number of false 

alerts. 

Furthermore, the results show that, when raw data 

was filtered for the first time using the Savitzky-

Golay filter (1st SGF), fluctuation noise was 

decreased by 64.40 % in comparison to raw data. 

Furthermore, when the initial filtered data was put 

to the Savitzky-Golay filter for the second time 

(2nd SGF), the fluctuation noise was significantly 

decreased by 79.10 %, see Fig. 2(a). Similarly, 

when the temperature difference resulting from 

raw data was filtered for the first time using the 

Savitzky-Golay filter (1st SGF), fluctuation noise 

was reduced by 83.00 % in comparison to raw 

data. When the original filtered data was sent 

through the Savitzky-Golay filter for the second 

time (2nd SGF), the fluctuation noise decreased by 

85.86 %, as shown in Fig. 2(b).

 

Fig. 2: (a) maximum temperature, Tmax and (b) temperature difference, ∆T distribution on 

lithium-ion battery with application Savitzky–Golay filter is applied 

 
                                       (a)                                                                         (b) 

MATLAB software is used to calculate the SNR 

using equation (5). The results in Table 2, 

demonstrated the Savitzky-Golay filter's ability to 

eliminate noise. Table 2 quantifies the signal-to-

noise ratio of the raw data after it has been first 

and second filtered. The noise level on the 

maximum temperature lithium-ion battery and 

temperature differential are compared in the 

quantified result that is displayed. The findings 

reveal that the SNR of ∆T is lower than the 

maximum temperature of the battery, with a 

similar result presented in Fig. 2(a) and (b). As 

shown in Table 2, when the Savitzky-Golay filter 

is applied to the raw data, the SNR is increased 

from 6.4384 to 11.6485 dB, which is equivalent to 

64.40% improvement of the signal, while the 

temperature difference shows an improvement of 

83.00%, implying that the Savitzky-Golay filter 

can filter better for the signal with very low signal 

to noise ratio. The results demonstrate that when 

the first filtered signal (1st SGF) is filtered a 

second time using the Savitzky-Golay filter, the 

maximum surface temperature improves by 

79.10%, while the temperature difference 

improves by 85.86 %. Thus, increasing the 

number of filters improves the signal-to-noise 

ratio. 
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Table 2: SNR of the signal before and after application of the Savitzky-Golay filter 

 

 

 

 

Fig. 3 shows the effect of applying the Savitzky-

Golay filter in multiple in the filtered signal. As 

seen, the filter is applied multiple times the signal-

to-noise ratio of the signal increases. For the 

maximum temperature Figure 3(a) the SNR 

increases from 6.4384 to 123.8 dB, the trend is 

similar to the difference temperature in which 

SNR increases from 0.7722 to 110.88 dB. This 

signifies that as the Savitzky-Golay filter is 

applied multiple times the better the measurement 

accuracy increases. However, multiple 

application of the Savitzky-Golay filter reduces 

the noise level in the signal, this becomes 

impractical to implement in the controller which 

has low computation power such as the 

microcontroller because it will experience 

computation delays owing to computational 

complexity. The study discovered that three times 

filtering is the optimum for reducing computation 

latency and improving signal quality.

Fig. 1: SNR for (a) maximum temperature and (b) temperature difference lithium-ion battery 

when Savitzky–Golay filter applied in multiple times 

  
(a)                                                (b) 

CONCLUSION 

In this research work, the input power from 30 W, 

40 W, 50 W, and 60 W were used to reproduce the 

high load. The maximum surface temperature and 

temperature difference from the results were 

obtained. The maximum surface temperature and 

temperature difference were corrupted by the 

random fluctuation of the temperature which can 

lead to inaccurate measurement. This work uses 

the Savitzky-Golay filter to minimize the effect of 

random fluctuation noises, the results obtained 

after filtering were found to give great 

improvement in the SNR by 79.1% and 85.86% 

when it was applied to the maximum temperature 

and temperature difference, respectively. It is 

concluded from the results Savitzky-Golay filter 

is capable of boosting noisy temperature data in 

which the noise ratio is very low such as 

temperature difference which is 0.7222 in 

comparison to maximum temperature. Therefore, 

the start-up time parameter in battery thermal 

management can be controlled by the Savitzky-

Golay filter which attenuates random temperature 

fluctuations of battery temperature noise and 

avoid the cooling system from being falsely 

triggered. 

 

 

Signal Max. temp. (SNR dB) Temp. difference (SNR dB) 

Raw data 6.4384 0.7222 

1st SGF 11.6485 3.5279 

2nd SGF 24.432 4.3857 
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