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ABSTRACT 

Singida region, located in central Tanzania, has long been identified as a 

potential location for installing wind farms to generate electric power due to 

the steady annual wind speed. Apart from the huge potential of contributing to 

the national grid, wind power also helps to address carbon emissions and 

environmental problems associated with generating electric power using fossil 

fuels.  Failure to accurately predict wind speed can lead to poor harvest of wind 

power and low contribution to the national grid, and in the end, affect 

consumers. Bidirectional Long Short-Term Memory (BiLSTM) is one of the 

Deep Learning models which can be used to predict time series parameters such 

as wind speed. In a BiLSTM model, a batch size is an important 

hyperparameter as it is used to set the number of training data samples to be 

processed together before the weights of a Deep Learning model are updated. 

Despite its importance, there is still a research gap on the impact of batch size 

on the prediction performance of BiLSTM models, especially in the context of 

predicting wind speed at the Singida Wind Farm Site, located in the Singida 

region, Tanzania. The goal of the study was to fill this gap by developing a 

BiLSTM model and comparing the performance of three batch sizes (16, 32 

and 64) in predicting wind speed at the Singida Wind Farm Site. The 14-year 

Singida Wind Farm Site daily wind speed dataset was first pre-processed by 

scaling (normalizing) it using Standard scaler and then split into training, 

validation and test sets before used to train and test the developed BiLSTM 

model which used previous 5 days wind speed values as input to predict the 

output (next day (6th day) wind speed). The trained BiLSTM model with the 

optimal (best performing) batch size was then saved in .h5 format and 

integrated with a Gradio-based web App to provide a user interface for officials 

in the Singida region to predict daily wind speed at the Singida Wind Farm 

Site. The evaluation findings revealed that batch size has an impact on the 

prediction performance of the developed BiLSTM model, showing that the 

lower the batch size, the better the prediction performance of the BiLSTM 

model. The findings also revealed that, 16 is the optimal (best performing) 

batch size with Mean Absolute Error (MAE) score of 0.58, Root Mean Squared 
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Error (RMSE) score of 0.76 and R2 score of 0.79, followed with a batch size of 

32 (MAE score of 0.62, RMSE score of 0.79 and R2 score of 0.75) and followed 

by a batch size of 64 (MAE score of 0.66, RMSE score of 0.81 and R2 score of 

0.72). This study recommends that Artificial Intelligence (AI) software 

developers and researchers use a batch size of 16 in BiLSTM models when 

forecasting wind speed at the Singida Wind Farm Site, as well as in 

environments and climates which resemble that of the Singida Wind Farm Site 

in Tanzania. 
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INTRODUCTION 

Wind energy, a kind of renewable energy, has 

emerged as an efficient source of electric power 

around the world, mostly because of its huge 

potential to contribute to the national electric grids 

and its role in reducing carbon emissions (Jung, 

2024; Skibko et al., 2022; Turi et al., 2022). A study 

by Jung (2024) revealed global installed capacity of 

wind energy nearly tripled from 2014 to 2024. 

Singida region, located in central Tanzania, has long 

been identified as a potential area for installing wind 

farms due to steady annual wind speed (Kumwenda 

and Mangara, 2024; Mangara and Kumwenda, 

2023). Because of this, there is an ongoing 

construction of the Singida Wind Power Station 

inside the Singida Wind Farm Site (Singida WFS).  

Accurate wind speed prediction is important when 

harvesting wind energy as it plays a significant role 

in managing wind farms and converting wind power 

into electric energy (Filik and Filik, 2017). Failure 

to accurately forecast wind speed can lead to poor 

harvest of wind power and low contribution to the 

national grid, and in the end, affect consumers such 

as manufacturing companies needing electricity to 

manufacture products and households needing 

electricity for basic needs, such as cooking and 

entertainment. To address this, it is important to 

have in place an effective Artificial Intelligence 

(AI) model which can accurately predict wind speed 

at Singida WFS, located in the Singida region, 

central Tanzania.   

Bidirectional Long Short-Term Memory (BiLSTM) 

is one of the Deep Learning models which can be 

used to predict various time series variables. In a 

Deep Learning model, a batch size is an important 

hyperparameter as it is used to set the number of 

training data samples to be processed together 

before the weights of a Deep Learning model are 

updated, and it can have a significant impact on the 
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performance of the Deep Learning model (Hwang 

et al., 2024).  

BiLSTM models with different batch sizes have 

been used in several studies to predict time series 

variables. García et al. (2024) used a BiLSTM 

model with a batch size of 32 to forecast the 

EURO/USD exchange rate, with results revealing 

that the BiLSTM model outperformed the LSTM 

model in prediction performance, achieving a Mean 

Absolute Error (MAE) score of 0.0189 compared to 

the MAE score of 0.0331 achieved by the LSTM 

model. Wang et al. (2023) used a BiLSTM model 

with a batch size of 20 to predict post-construction 

subsoil settlement under embankment in China, 

with the findings revealing that the BiLSTM model 

achieved a low Relative Error of 0.92%. Hao et al. 

(2022) used an Attention-based BiLSTM model 

with a batch size of 256 to predict atmospheric 

temperature in Beijing, China, with the findings 

revealing that the Attention-based BiLSTM model 

outperformed the BiLSTM model by achieving an 

MAE score of 0.013, which is 0.72% lower than that 

of the BiLSTM model. Meng et al. (2025) used an 

Inter-Attention based BiLSTM model with a batch 

size of 128 to predict oil well production in Sichuan, 

China, with the findings revealing Inter-Attention 

based BiLSTM model outperformed the BiLSTM 

model by achieving an MAE score of 0.0902 

compared to an MAE score of 0.0965 achieved by 

the BiLSTM model. Zhao et al. (2020) used a 

BiLSTM model combined with a Convolutional 

Neural Network (CNN) and a batch size of 512 to 

predict the remaining useful life of engines, with the 

findings revealing their proposed CNN-BiLSTM 

hybrid model achieved a better performance with a 

Root Mean Squared Error (RMSE) score of 12.51 

compared to the RMSE score of 15.32 achieved by 

the CNN model. Zhang et al. (2024) used a CNN-

BiLSTM model with an Attention Mechanism and 

a batch size of 16 to forecast severe convective 

weather in China, with the findings revealing that 

the CNN-BiLSTM model outperformed human 

forecasts in predicting short-term heavy rainfall 

with a Threat Score (TS) of 0.463 compared to a TS 

of 0.401 achieved by human forecasts. Méndez et 

al. (2023) used a CNN-BiLSTM model with a batch 

size of 32 to predict long-term road traffic flow in 

Madrid, Spain, with the findings revealing MAE 

score of the proposed CNN-BiLSTM model was 

2.8% smaller than that of the BiLSTM model. Lu et 

al. (2021) used a CNN-BiLSTM model with an 

Attention Mechanism and a batch size of 64 to 

predict stock prices for Shanghai Composite Index 

stock, with the findings revealing that the proposed 

CNN-BiLSTM model outperformed the BiLSTM 

model by achieving an MAE score of 21.952 

compared to an MAE score of 23.409 achieved by 

the BiLSTM model. Bai et al. (2025) proposed a 

multivariate temperature prediction model based on 

CNN-BiLSTM and Random Forest and a batch size 

of 32 to predict temperature in Hunan, China, with 

the findings revealing the proposed method 

achieved better results than the current leading 

Dliner method by reducing the Mean Squared Error 

(MSE) score by 57.5%.  Zhang et al. (2025) used a 

CNN-BiLSTM model with an Attention 

Mechanism and a batch size of 32 to forecast stock 

market volatility using mixed-frequency data, with 

the findings revealing that the CNN-BiLSTM 

model outperformed the BiLSTM model by 

achieving an MAE score of 0.2683 compared to an 

MAE score of 0.3737 achieved by the BiLSTM 

model.   

Despite effective results from the reviewed 

BiLSTM-based studies, there is still a research gap 

on the impact of batch size on BiLSTM model 

performance, and hence, it is still unknown what the 

optimal batch size is to use in a BiLSTM model in 

the context of forecasting wind speed at Singida 

WFS, which has unique characteristics such as a 

small geographical area and unique climatic 

conditions. Therefore, there is a need to conduct a 

study to compare the performance of several batch 

sizes in the BiLSTM model. This is because an 

optimal batch size cannot just be selected, assuming 

it will have the best performance, as it can be 

evident from the reviewed literature that the choice 
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of BiLSTM batch size depends on the nature of the 

problem and the conditions being studied.  

The objectives of this study are threefold: first, to 

develop a BiLSTM model for predicting wind speed 

at Singida WFS, second, to comparatively evaluate 

prediction performances of different batch sizes in 

the developed BiLSTM model and third, to develop 

a Web App and integrate it with the developed 

BiLSTM model configured with the optimal (best 

performing) batch size to help officials in the 

Singida region to forecast daily wind speed at 

Singida WFS. As a result, this study aims to answer 

one key research question: What is the impact of 

batch size on the performance of the BiLSTM 

model in predicting wind speed at Singida WFS? 

This study’s findings will help to fill the existing 

research gap on performance comparison of 

BiLSTM model batch sizes in forecasting wind 

speed, especially in the context of Singida WFS in 

Tanzania.    

MATERIALS AND METHODS 

Study Area 

The study area, Singida WFS, is located in the 

Singida district, Singida region, Tanzania, as shown 

in the blue polygon in Figure 1. The red ellipse 

shows the Singida Wind Power Station currently 

being constructed.  

Figure 1: Singida WFS (blue polygon) and Singida Wind Power Station (red ellipse) 

 

Research Design  

This study uses an experimental research design by 

developing a BiLSTM Deep Learning model, 

training it using training and validation data and 

testing its performance to predict daily wind speed 

at Singida WFS using test data (never seen before 

data).  

Research Approach   

This study used a quantitative research approach by 

utilising quantitative data (14-year daily wind speed 

data at Singida WFS) to train and evaluate (test) the 

performance of the developed BiLSTM Deep 

Learning model in predicting daily wind speed at 

Singida WFS.  

Data Collection and Analysis Methods 

The study used secondary data by downloading 

daily wind speed data for Singida WFS from the 

European Reanalysis (ERA5 Land - 11km Daily) 

dataset available in the Google Earth Engine (GEE) 

cloud platform. On the other hand, this study 

utilised time series analysis of 14-year daily wind 

speed data at Singida WFS to train and test a 

BiLSTM Deep Learning model to predict daily 
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wind speed at Singida WFS. Also, Descriptive 

Statistics was used to analyse the pattern and trend 

of the 14-year daily wind speed data at Singida WFS 

and identify key indices such as mean, standard 

deviation, minimum and maximum values of wind 

speed.    

Sampling Technique and Sample Size 

In this study, purposive sampling, a non-probability 

sampling approach, was used to select a single study 

area, Singida WFS. The study area was chosen 

because of the reliable availability of its historical 

wind speed data, its susceptibility to wind speed 

variability, as well as its potential in attracting the 

installation of wind farms and the construction of 

wind power stations due to its steady annual wind 

speed. A large sample size of temporal data points 

(daily wind speed data for a total of 14 years) 

ensured sufficient data was available for training 

and testing the developed BiLSTM model. Apart 

from that, choosing only a single study area 

enhances the focus of the developed BiLSTM 

model and reduces variability, which might happen 

if different climates or multiple study areas are 

selected. A sample size of only three batch sizes (16, 

32 and 64) was chosen because of their widespread 

use in Deep Learning research (as evident in in 

studies by (Zhang et al., 2024; Radiuk, 2017; Lin, 

2022; Abdulnabi et al., 2016) which used a batch 

size of 16, studies by (García et al., 2024; Méndez 

et al., 2023; Bai et al., 2025) which used a batch size 

of 32 and studies by (Lu et al., 2021; Zhang et al., 

2025; Kandel et al., 2020; Oyedotun et al., 2023) 

which used a batch size of 64 and development, as 

well as because of their ability to represent a 

meaningful range from small to large batch size. A 

batch size of 16 is useful in capturing the effects of 

frequent weight updates and better generalisation, 

which is important for processing time series data 

like wind speed. A batch size of 32 serves as a 

commonly accepted default batch size in the 

literature, which balances prediction performance 

and computational efficiency, while a batch size of 

64 reflects a larger batch size aimed at reducing 

training time. Limiting the study to these three batch 

sizes ensured methodological relevance, practical 

feasibility and meaningful performance comparison 

without incurring unnecessary computational costs. 

Dataset 

The European Reanalysis (ERA5 Land - 11km 

Daily) global dataset was used to download time-

series daily wind speed data for Singida WFS (refer 

to the blue polygon in Figure 1). The downloaded 

wind speed data were limited to the enclosed area in 

the polygon.  The wind speed data in CSV format 

for a total of 14 years (from January 1st, 2010 to 

December 31st, 2023) for Singida WFS were 

downloaded from Google Earth Engine (GEE), 

which hosts the ERA 5 Land – 11km Daily dataset. 

GEE is a cloud-based platform owned by Google 

(Tamiminia et al., 2020). The ClimateEngine 

application (Huntington et al., 2017) was used to 

download the CSV data from the GEE. Figure 2 

shows daily wind speed for Singida WFS for a 

duration of 14 years, from January 1st, 2010 to 

December 31st, 2023.  
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Figure 2. Daily Wind Speed at Singida WFS from January 1st, 2010 to December 31st, 2023 

 

Pre-processing of Data 

For input data to be fed into the BiLSTM model, 

they first need to be pre-processed. This section 

describes the steps used to pre-process data.  

• Data Analysis: All of the daily wind speed data 

at Singida WFS for a period of 14 years were 

analysed. Descriptive Statistics analysis results 

(refer to Table 1) of the wind speed data 

revealed a count (total datapoints) of 5113, an 

average (Mean) value of 3.6003 m/s, a 

standard deviation (STD) value of 1.6571 m/s, 

a lowest (Min) value of 0.0473 m/s, first 

quartile (25%) value of 2.2287 m/s, second 

quartile (50%) value of 4.0796 m/s, third 

quartile (75%) value of 4.9083 m/s and a 

highest (Max) value of 7.2094 m/s. 

• Data Normalisation (Scaling): The daily wind 

speed data at Singida WFS was normalised 

(scaled) by using Standard Scaler in order to 

enhance BiLSTM model training and 

convergence, as shown in equation (i), where 

𝑋, 𝜇, 𝜎 and 𝑋𝑆 Represent actual, mean, 

standard deviation, and scaled wind speed 

values, respectively. 

𝑋𝑆 =
𝑋−𝜇

𝜎
     (𝑖)                                     

• Data Split: To properly train and test the 

BiLSTM model, the dataset needed to be split 

into a train, validation and test set. The train 

and validation sets are usually used during 

training of the BiLSTM model, while the test 

set (alternatively called unseen data) is usually 

used to test (evaluate) prediction performance 

of the BiLSTM model and measure its 

generalisation capability when fed with 

completely new data it has never seen before 

(Halpern-Wight et al., 2020; Doğan, 2021). 

For example, a pre-trained BiLSTM model 

exported and saved in .h5 format can be given 

the first 5 days of wind speed data, say wind 

speed data for July 1st, July 2nd, July 3rd, July 

4th and July 5th as input data and asked to 

predict wind speed for July 6th as an output. 

The downloaded 14-year daily wind speed data 

at Singida WFS was split into a training set 

(the first 70%, from January 2010 to October, 
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2019), validation set (the next 15%, from 

October 2019 to November 2021) and test set 

(the last 15%, from November, 2021 to 

December, 2023). 

• Input Features and Labels: Because the dataset 

contained only daily wind speed data, there 

was a need to create input features (inputs to 

the BiLSTM model) and their corresponding 

labels (output of the BiLSTM model) in order 

to train the BiLSTM model and make it learn 

how to map the inputs to the output. Each 

input-output pair consisted of a sequence of the 

previous 5 days' values of wind speed as inputs 

and the next day's (6th day) wind speed as 

output. Input-output pairs were created for all 

of the data in each of the three sets (train, 

validation and test sets).  

Table 1: Descriptive Statistics Analysis Results for 14-year Daily Wind Speed Data at Singida WFS 

Index Wind Speed (m/s) 

Count 5113.0 

Mean 3.6003 

STD 1.6571 

Min 0.0473 

25% 2.2287 

50% 4.0796 

75% 4.9083 

Max 7.2094 

Architecture of the LSTM Unit 

Long Short-Term Memory (LSTM) studied by 

Hochreiter and Schmidhuber (1997) is a special 

kind of Recurrent Neural Network (RNN), suitable 

and usually applied to process data arranged in 

sequence, like time series variables, including the 

wind speed. Classical RNNs are faced with a critical 

problem of vanishing gradients, where the RNN 

model fails to remember useful information from 

the past timesteps during RNN model training by 

backpropagation. To address the vanishing 

gradients problem, LSTM is designed to have the 

ability to retain useful information from past 

timesteps over many timesteps, making the useful 

past information instantly available whenever it 

needs to be utilised in the future. Figure 3 shows the 

architecture of the LSTM unit.  

Figure 3: Architecture of LSTM Unit 
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The main components of the LSTM unit are the cell 

state. 𝑐𝑡 and the three gates; forget gate 𝑓𝑡, input gate 

𝑖𝑡 and output gate 𝑜𝑡. 

• Cell State: Cell 𝑐𝑡 The role is to store 

information over timesteps. Forget gate and 

input are normally used to update the cell state 

by adding or removing information. Through 

this, the LSTM unit can either retain or forget 

information depending on whether it is 

relevant or not, allowing the LSTM unit to 

remember useful information over many 

timesteps.  

• Forget Gate: Forget gate. 𝑓𝑡 Role is to decide 

what information to discard (not keep) from 

the cell state. This is done through combining 

two inputs: the previous hidden state ℎ𝑡−1 and 

the current input 𝑥𝑡 And then compute an 

output ranging between 0 and 1 for each 

component in the cell state, with an output of 

0 indicating ‘completely forget’ and an output 

of 1 indicating ‘completely retain’. The 

sigmoid neural network layer σ role (refer to 

equation (ii)) is to give an output ranging 

between 0 and 1 when fed with any input. 

Equation (iii) shows the forget gate with 𝑊𝑓 

and 𝑏𝑓 Indicating weight matrices and bias 

vector parameters of the forget gate, 

respectively, both of which are learned during 

training of the LSTM unit. 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
     (𝑖𝑖) 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)     (𝑖𝑖𝑖) 

• Input Gate: Input gate 𝑖𝑡 The role is to decide 

which new information is added to the cell 

state. Two elements were part of the input 

gate: the sigmoid neural network layer 𝜎 and 

a tanh layer (refer to equation (iv) with 𝑒 

being Euler’s number), whose role was 

creating a candidate vector. 𝑐̃𝑡 Whose values 

could be added to the cell state. Equations (v) 

and (vi) show the components of the input 

gate with 𝑊𝑖 and 𝑏𝑖 being weight matrices and 

bias vector parameters of the input gate, 

respectively, and 𝑊𝑐 and 𝑏𝑐 Being weight 

matrices and bias vector parameters of the 

candidate cell state, respectively, all of which 

are learned during training of the LSTM unit.    

𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥      (𝑖𝑣)  

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)     (𝑣)  

𝑐̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)     (𝑣𝑖) 

• Output Gate: The output gate 𝑜𝑡 role is 

controlling the output of the LSTM unit. The 

output gate (refer to equation (vii)) does this 

by combining the previous hidden state ℎ𝑡−1 

and the current input 𝑥𝑡 and then decides 

which part of the cell state to output as the 

next hidden state, with 𝑊𝑜 and 𝑏𝑜 being 

weight matrices and bias vector parameters of 

the output gate, respectively, both of which 

are learned during training of the LSTM unit. 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)     (𝑣𝑖𝑖) 

At last, the cell state and hidden state need to be 

updated. Forget gates and input gates were used to 

update the cell state as shown in equation (viii) and 

then the updated cell state and the output gate were 

used to update the hidden state (LSTM unit output) 

as shown in equation (ix).  

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐̃𝑡      (𝑣𝑖𝑖𝑖) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝑐𝑡)     (𝑖𝑥) 

Architecture of BiLSTM Unit 

The architecture of the BiLSTM unit (refer to 

Figure 4) is based on the LSTM unit architecture. 

The key difference between LSTM and BiLSTM 

units is the fact that, LSTM unit processes 

timeseries information in only one direction 

(forward direction) while the BiLSTM unit 

processes information in both forward and 

backwards directions. BiLSTM unit consists of two 

LSTM units: the Forward LSTM unit, whose role is 
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to process information in a forward direction, from 

the first timestep to the last timestep, and the 

Backwards LSTM unit, whose role is to process 

information in a backwards direction, from the last 

timestep to the first timestep. Finally, the outputs 

from the Forward LSTM unit and the Backwards 

LSTM unit are aggregated to produce a single 

output of the BiLSTM unit.   

Figure 4: Architecture of BiLSTM Unit 

 

Proposed BiLSTM Model 

The proposed BiLSTM model is shown in Figure 5. 

The architecture of the proposed BiLSTM model 

consisted of two BiLSTM layers and one Dense 

layer. BiLSTM layer role is to learn the pattern of 

the input data (previous 5 days wind speed) and how 

to map it with the output (the next day (6th day) wind 

speed). The dense layer role is to output a single 

numerical value, which acts as the forecasted 

(predicted) wind speed. A total of 3 batch sizes, 16, 

32 and 64, were chosen for this study. The selected 

batch sizes were alternately used during training of 

the BiLSTM model.  

Figure 5: Proposed BiLSTM model 

 

Loss Function and Performance Evaluation 

Metrics 

Loss Function was used to assess the BiLSTM 

model's performance during training and check if 

the model is correctly learning how to map inputs to 

the output. It does this by measuring the error 

between the actual value 𝑦 and the predicted value 

𝑦̂ and assess how accurately the model predicts the 

values which are close to the true (actual) values 

(Martin-Donas et al., 2018; Edalatifar et al., 2022). 

Mean Squared Error (MSE) (refer to equation (x)) 

is used as a Loss Function in this study. After being 

trained, the performance of the BiLSTM model 

needs to be evaluated (tested) on the test set (unseen 

data) in order to measure its ability to generalise on 

new data that it has never seen before. This study 

utilised three performance evaluation metrics. The 

first evaluation metric, Mean Absolute Error (MAE) 

(refer to equation (xi)), measured the mean absolute 

error between the actual value 𝑦 and the predicted 

value 𝑦̂, the lower the MAE score the better 

performance of the BiLSTM model (García et al., 

2024; Hao et al., 2022). The second evaluation 

metric, Root Mean Squared Error (RMSE) (refer to 

equation (xii)), measured the root mean squared 

error between the actual value 𝑦 and the predicted 

value 𝑦̂, the lower the RMSE score, the better the 
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performance of the BiLSTM model (Zhao et al., 

2020; Jiang et al., 2021). The third evaluation 

metric, R-Squared (R2) (refer to equation (xiii), with 

𝑦̅𝑖 indicating the mean of actual values) measures 

the coefficient of determination between the actual 

value 𝑦 and the predicted value 𝑦̂, the higher the R2 

score, the better the performance of the BiLSTM 

model (Jiang et al., 2021; Michael et al., 2024). 

 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1      (𝑥)    

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 −  𝑦̂𝑖|𝑛

𝑖=1      (𝑥𝑖)  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1      (𝑥𝑖𝑖)    

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅𝑖)2𝑛
𝑖=1

     (𝑥𝑖𝑖𝑖)   

Web App 

This study developed a Web App shown in Figure 

6 using the Gradio framework (Ferreira et al., 2024). 

Officials at Singida WFS can use Web browsers to 

access CSS (Cascaded Style Sheet) styled Web 

pages in the Web App, get authenticated, enter the 

5 previous days' wind speed values and click the 

‘Predict’ button to predict the next (6th) day wind 

speed. Afterwards, the Web App takes the entered 

parameters (previous 5 days wind speed values) and 

sends the entered parameters to the imported and 

pretrained BiLSTM model in .h5 format. The 

pretrained BiLSTM model takes the entered 

parameters as input, predicts the next day wind 

speed, and returns the predicted next day wind 

speed back to the Web App, which displays it back 

to the official.   

Figure 6: Web App with Login page (Left) and Wind Speed Prediction Page (Right) 

   

RESULTS  

Computation Environment 

The BiLSTM model was developed in IPython 

Notebook and all training and testing experiments 

of the BiLSTM model were conducted in Google 

Colab Cloud platform (Bisong, 2019) with the 

following allocation of runtime environment. 

System RAM of 12.7 GB and Hard Disk space of 

107.7 GB. Various software libraries were used in 

the Google Colab environment, including 

TensorFlow, Keras, Scikit-Learn, Pandas, Numpy 

and MatplotLib.  

Hyperparameters Tuning 

Hyperparameters played a significant role in fine-

tuning the Deep Learning models' performance 

during the training process. The BiLSTM Deep 

Learning model underwent several rounds of 

hyperparameter tuning, and finally, the following 

identical hyperparameters were selected for the 

BiLSTM model for each of the three batch sizes: 
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two layers of BiLSTM units, output dimensionality 

of 100 for the first BiLSTM layer, output-

dimensionality of 200 for the second BiLSTM layer, 

1 unit in a Dense layer, learning rate of 0.01, Adam 

as an optimiser and 100 training epochs. 

Training Results of BiLSTM Model 

After finishing tuning the hyperparameters, a total 

of three experiments were conducted to train the 

BiLSTM model, using a different batch size in each 

experiment. After each training experiment, the 

trained BiLSTM model was saved in .h5 format for 

future inference in the performance testing 

(evaluation) phase. Therefore, there were three 

different saved versions of the trained BiLSTM 

model, one version for each batch size. Figure 6 

shows the training loss (MSE) of the BiLSTM 

model using three different batch sizes. 

Figure 6: Training Loss (MSE) for BiLSTM Batch Sizes 

 

Performance Evaluation Results of BiLSTM 

Model 

Each version of the trained BiLSTM model was 

used to evaluate the performance of the 

corresponding batch size used in the BiLSTM 

model by evaluating the prediction performance of 

the BiLSTM model on a test set (the unseen data 

which have not been seen before by the BiLSTM 

model). Each version of the BiLSTM model was 

given test data as input and asked to forecast the 

wind speed. Figure 7 shows actual wind speed 

against predicted wind speed at Singida WFS by 

three different versions of the BiLSTM model, with 

each version representing the BiLSTM model 

trained with a different batch size. Table 2 shows 

performance evaluation results (Test MAE score, 

Test RMSE score, Test R2 score and Training Time) 

for all three versions of the developed BiLSTM 

model. These findings revealed that, 16 was the best 

performing (optimal) batch size with MAE score of 

0.58, RMSE score of 0.76 and R2 score of 0.79, 

followed by a batch size of 32 (MAE score of 0.62, 

RMSE score of 0.79 and R2 score of 0.75) and 

followed by batch size of 64 (MAE score of 0.66, 

RMSE score of 0.81 and R2 score of 0.72). These 

results implied that batch size had an impact on the 

performance of the BiLSTM model and that the 

lower the batch size, the better the performance of 

the BiLSTM model in predicting daily wind speed 

at Singida WFS. On the other hand, these results 

also revealed batch size had impact on 

computational efficiency of the BiLSTM model and 

that the lower the batch size the lower the 

computation efficiency (higher training time) with 

the results indicating batch sizes of 16, 32 and 64 

required 16 minutes, 12 minutes and 7 minutes to 

train the BiLSTM model respectively.  
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Figure 7: Actual vs Predicted Wind Speed by BiLSTM Model Batch Sizes 

 

Table 2: Performance Evaluation Results of BiLSTM Model Batch Sizes 

BiLSTM Batch Size Test MAE  Test RMSE Test R2 Training Time (Minutes) 

16 0.58  0.76 0.79 16 

32 0.62  0.79 0.75 12 

64 0.66  0.81 0.72 7 

DISCUSSION  

Difference in Prediction Performance between 

BiLSTM Model Batch Sizes 

The findings reveal that a batch size of 16 achieved 

the best prediction performance (lowest test MAE 

and RMSE as well as highest R2 scores), 

demonstrating its superior performance in learning 

and preserving wind speed data patterns in the 

BiLSTM model. The next best performing batch 

size was 32 with a slightly higher test MAE and 

RMSE scores, as well as a slightly lower test R2 

score. The last performing batch size was 64 with 

the highest test MAE and RMSE scores, as well as 

the lowest R2 score. Best performance of 16 batch 

size can be attributed to the fact that it allows Deep 

Learning models to update model weights more 

frequently, which in turn helps to better capture 

local patterns and complex temporal dependencies 

in timeseries data (Zhang et al., 2024; Radiuk, 

2017). The slightly lower performance of a 32 batch 

size can be attributed to the fact that the Deep 

Learning models still benefit from frequent updates, 

but now the gradient estimates are smoother (García 

et al., 2024; Méndez et al., 2023), possibly making 

Deep Learning models miss finer details in 

sequences of time series data. The lowest 

performance of 64 batch size can be attributed to the 
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fact that larger batch sizes produce very smooth 

gradient updates (Lu et al., 2021; Zhang et al., 

2025), which can lead to slow learning and 

underfitting of Deep Learning models.  

Difference in Computational Efficiency between 

BiLSTM Model Batch Sizes 

During the training of the BiLSTM model, it was 

observed that batch size has a significant impact on 

the BiLSTM model training time. Smaller batch 

sizes (for instance, 16), while providing better 

prediction performance in terms of MAE, RMSE, 

and R² scores, required more training time per 

epoch. The reason behind this is that smaller batches 

result in more frequent model weight updates, 

which leads to slower convergence (Zhang et al., 

2024). On the other hand, larger batch sizes (for 

instance, 64) reduced training time due to fewer 

model weight updates (Lu et al., 2021). These 

findings highlight a key trade-off between 

computational efficiency and predictive 

performance, which is important when deploying 

models in resource-constrained or time-sensitive 

environments. Despite having lowest computational 

efficiency compared to 32 and 64 batch sizes, this 

study prefers the highest prediction performance of 

16 batch size over its lowest computational 

efficiency due to the fact that, after training the 

BiLSTM it is saved into .h5 format to ensure all 

future inferences in the Web App will use pretrained 

.h5 BiLSTM model without any model retraining. 

This reduces the impact of computational efficiency 

on the BiLSTM model. Also, 16 minutes required 

to train the BiLSTM model with a batch size of 16 

is relatively attainable with free computational 

resources available in cloud platforms such as 

Google Colab.  

Comparison with Findings from Literature 

These findings suggest that, choice of batch size has 

an impact on the performance of BiLSTM models 

in prediction (forecasting) tasks of time series 

variables, and 16 is the optimal (best performing) 

batch size to use in BiLSTM models when 

predicting daily wind speed at Singida WFS, 

followed a 32 batch size, followed by 64 batch size. 

These findings align well with the findings from the 

literature, which also suggest that batch size has an 

impact on the prediction performance of Deep 

Learning models and that the best-performing batch 

size depends on the type of Deep Learning model 

used and the nature of the problem being addressed. 

This is evident in a study by Hao et al. (2022), which 

compared the performance of several batch sizes in 

predicting atmospheric temperature using a 

BiLSTM model and concluded that the optimal 

batch size was 256. Another evidence is found in a 

study by Hwang et al. (2024), which determined the 

optimal batch size after comparing the performance 

of several batch sizes of Deep Learning models in 

predicting traffic volume, revealing, the optimal 

batch size for the RNN model was 288 while the 

optimal batch size for the CNN model was 1440.  

Practical Applications 

This study provides a practical solution for daily 

wind speed prediction at Singida WFS and Singida 

Wind Power Station using a BiLSTM Deep 

Learning model, integrated with a user-friendly 

Gradio based Web App. The goal of this predictive 

model is to assist government officials, energy 

planners, and site engineers in making informed 

operational and strategic decisions by accurately 

forecasting wind speed and optimising wind power 

generation, properly scheduling turbine 

maintenance, ensuring grid stability and improving 

overall renewable energy planning in Tanzania.  

The Web App will enable users to input recent 

weather data and receive daily wind speed forecasts 

with ease. The Web App eliminates the need for 

technical expertise or access to complex tools to 

predict wind speed and thus can be adopted widely 

by energy agencies and policymakers. Furthermore, 

the Web App serves as a scalable framework that 

can be extended to other renewable energy sites 

with similar environmental and climatic conditions 

as Singida WFS and, as a result, contributes to a 
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data-driven approach for national energy planning 

and sustainability in Tanzania. 

Theoretical Implications  

These findings support well-established principles 

in Deep Learning, including the following: 

• Stochastic Gradient Descent Behaviour: The 

smaller batch sizes approximate the behaviour 

of a pure stochastic gradient descent (SGD), 

which introduces higher variability in gradient 

updates. As a result, the optimiser can escape 

shallow local minima and better explore the 

optimisation landscape (Zhang et al., 2024). 

This is beneficial in complex models like 

BiLSTM.  

• Tradeoff between Bias and Variance: The 

smaller batch sizes feed more noise into the 

learning process, as a result increasing the 

variance but lowering the bias. This can help 

Deep Learning models learn richer 

representations at the cost of slower 

convergence (Lin, 2022). 

• Temporal Sensitivity: BiLSTM models capture 

forward and backwards dependencies in 

sequential timeseries data. Larger batch sizes 

might oversmooth gradients, making the 

BiLSTM model less sensitive to sudden 

changes or rare patterns in time series sequential 

data (García et al., 2024), which are critical in 

problems like wind speed prediction. 

• Tradeoff between Generalisation and 

Computational Efficiency: Despite larger batch 

sizes being more computationally efficient, they 

may hinder model generalisation, especially in 

smaller or noisier datasets (Lu et al., 2021).  

Major Contributions  

This study has the following major contributions:  

• Novel BiLSTM Model: In this study, a novel 

BiLSTM Deep Learning model has been 

developed, which uses the optimal 16 batch size 

to predict daily wind speed at Singida WFS. The 

developed BiLSTM model was trained and 

saved in .h5 format to facilitate future inference 

by the Gradio based Web App.  

• Web App: This study developed a ready-to-use 

Gradio based Web App to help officials at 

Singida WFS and company officials at Singida 

Wind Power Station predict daily wind speed 

and take appropriate measures to efficiently 

manage the wind park.  

• Pre-processed Dataset: This study pre-

processed a 14-year Singida WFS daily wind 

speed dataset using several approaches, 

including data scaling, creation of input and 

output features and data splitting into train, 

validation, and test sets. Afterwards, the 

preprocessed dataset was saved in .pkl format, 

making it ready for importation and use by 

Deep Learning models. The preprocessed 

dataset will in future be shared on the GitHub 

cloud platform for use in AI research and 

development by anybody freely.  

• Filling the Research Gap: The findings of this 

study will help to fill the existing research gap 

on the impact of batch sizes on the prediction 

performance of BiLSTM Deep Learning 

models, especially in the context of predicting 

daily wind speed at Singida WFS and 

environments resembling that of Singida WFS.  

Study Limitations 

Despite the findings of this study revealing strong 

effectiveness of the developed BiLSTM model in 

predicting wind speed at Singida WFS, there are 

several limitations of this study:  

• Limited Geographic Area: This study is based 

on the Singida WFS and uses one dataset to 

train the BiLSTM model to predict wind speed. 

As a result, there is a limitation on the ability of 

the developed BiLSTM model to capture 

variable environmental and climatic conditions 
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across other geographic locations with different 

climates and environments.  

• Operational Constraints Consideration: This 

study did not consider practical challenges and 

requirements of implementing the wind speed 

prediction system at Singida WFS, such as 

training of local staff or integration with 

existing wind management workflows and 

protocols. As a result, the actual deployment of 

the developed Web App might be impacted.  

CONCLUSION 

The study developed a BiLSTM Deep Learning 

model for predicting daily wind speed at Singida 

WFS and evaluated its prediction performance 

when implemented with three different batch sizes 

of training data. The findings reveal that a batch size 

of 16 is the best performing (optimal) batch size, 

achieving the lowest test MAE and RMSE scores 

and the highest R2 score, followed by a batch size of 

32 and followed by a batch size of 64. These results 

suggest choice of batch size has a direct impact on 

the performance of the BiLSTM Deep Learning 

model in predicting wind speed at Singida WFS and 

similar environments, with the results indicating 

that the lower the batch size, the better the 

prediction performance.    

Recommendations  

This study recommends a batch size of 16 as the 

optimal and practical batch size to use in BiLSTM 

Deep Learning models for predicting daily wind 

speed at Singida WFS and environments with 

similar climatic conditions.  
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