A Microcosm Analysis of Species-Specific Responses of Chironomidae on Heavy Metal Pollution in The Nyanza Gulf of Lake Victoria
Abstract
The Chironomidae family, known as "non-biting midges" in their adult stage and "bloodworms" in their larval stage, consists of diverse dipteran insects inhabiting various global aquatic environments. Despite extensive global research, data on Chironomidae in the polluted Nyanza Gulf of Lake Victoria, Kenya, is scarce, and molecular identification methods have not been explored. This study aimed to quantify heavy metal concentrations in water, sediment, and insect samples and assess their impact on Chironomid species identified using mitochondrial DNA barcoding of the cytochrome oxidase subunit 1 (COI) gene. Analysis of Variance was used to determine if there were any statistically significant differences in heavy metal concentrations across different sample types or locations along the pollution gradient. Chironomids were collected from Nyanza Gulf, focusing on a pollution gradient. Results showed that concentrations of arsenic (As), lead (Pb), and cadmium (Cd) in insect, water, and sediment samples exceeded standard limits, while mercury (Hg) concentrations were within limits. Significant variations (p ≤ 0.05) in Pb levels were observed in water samples, and heavy metal concentrations in sediment samples varied significantly (p ≤ 0.05), with Pb showing the highest variation (p ≤ 0.0001). Insect samples exhibited significant differences (p ≤ 0.0001) in As and Hg contents. Genetic analysis identified two known species: Chironomus transvaalensis at the heavily polluted Kisumu station and Chironomus pseudothummi at the moderately polluted Kendu Bay and Homa Bay stations. Additionally, a unique Chironomus species was found on Ndere Island, a relatively clean site with restricted human activities. Sequence comparisons indicated proximity to global data but also highlighted the evolutionary significance and uniqueness of the identified species. This study demonstrated the potential use of genetic methods in determining Chironomid species diversity, community structure, and abundance in relation to heavy metal concentration. It suggests that heavy metal pollution may act as a selective pressure, driving the evolution of Chironomid species. The study recommends combining genetic approaches with other pollution sources for a comprehensive understanding of using this species in monitoring pollution
Downloads
References
Akhtar, Y., & Isman, M. B. (2018). Insects as an alternative protein source. In Proteins in food processing (pp. 263-288). Woodhead Publishing.
Andersen, T., Saether, O.A., Cranston, P.S., & Epler, J.H. (2013) "9. The larvae of Orthocladiinae (Diptera: Chironomidae) of the Holarctic Region - Keys and diagnoses." Insect Systematics & Evolution Suppl. 66: 189-386.
Armitage, D. P., Cranston, P., & Pender, L. C. V. (1995) The Chironomidae: Biology and ecology of non-biting midge. Chapman and Hall. Edinburgh.
Armstrong, J. B., Fullerton, A. H., Jordan, C. E., Ebersole, J. L., Bellmore, J. R., Arismendi, I., Penaluna, B. E., & Reeves, G. H. (2021). The importance of warm habitat to the growth regime of cold-water fishes. Nat. Clim. Change 11: 354–361. doi:10.1038/s41558-021-00994-y.
Ashe, P., O’Connor, J. P. (2009). A world catalogue of Chironomidae (Diptera). Part 1. Buchonomyiinae, Chilenomyiinae, Podonominae, Aphroteniinae, Tanypodinae, Usambaromyiinae, Diamesinae, Prodiamesinae and Telmatogetoninae; Irish Biogeographical Society & National Museum of Ireland: Dublin, Ireland, 2009; p. 445.
Ayieko, M. A., (2013) Review on Community Food Security and Edible Insects Resources: Biodiversity and Policy Implication for Safeguarding Human Consumption. Journal of Agricultural Biotechnology and Sustainable Development, 1(1): 1 -10.
Balalai-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R., & Sadeghi, M. (2021).Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Frontier in Pharmacology 12:643972. doi: 10.3389/fphar.2021.643972.
Batool, H., Hussain, M., Hameed, M., & Ahmad, R. (2020) Spatial and Temporal Heterogeneity of Metal Contaminants in Soils Along Two Major Roads. Bulletin of Environmental Contamination and Toxicolology 105. 10.1007/s00128-020-02899-6.
Belle, S., Rius, D. & Bichet V. (2017). Combining limnology and paleolimnology to assess the influence of climate change on two lakes in Southern Greenland. Polar Biol. 1-15.
Brooks, S. J., Langdon P., & Heiri, O. (2008). The Identification and Use of Palaearctic Chironomidae Larvae in Palaeoecology. Quaternary Research Association, Technical Guide 10. Journal of Paleonlimnology, 40(2): 751-753, http://dx.doi.org/10.1007/s10933-007-9191-1.
Coffman W.A. (1996) A introduction to the Aquatic Insects of North America. Kendall-Hunt Publishing Company.
Coffman, W. P., & Ferrington L.C. Jr. (1996). Chironomidae. pp 635-754.In: Merrit, R. W. & Cummins, K.W. Eds. An introduction to the Aquatic Insects of North America. Kendall-Hunt Publishing Company.
Cranston P. S. (1995a) Introduction in: Armitage, P. D. & Pinder, L.C.V. (Eds). The Chironomidae: Biology of non-biting midges. Chapman &Hall.
Cranston, P. S., Ang, Y. C., Heyzer, A., Lim, R. B., Wong, W. H., Woodford, J. M., Meier, R. (2013). The nuisance midges (Diptera: Chironomidae) of Singapore's Pandan and Bedok reservoirs. Raffles Bull Zool. 2013;61:2.
Di Veroli A., Santoro F., Pallottini M., Selvaggi R., Scardazza F., Cappelletti D. & Goretti E. (2014). Deformities of chironomid larvae and heavy metal pollution: from laboratory to field studies. Chemosphere. 112:9-17.
Ekrem, T., Stur, E., Hebert, P. D. N. (2010). Females do count: Documenting Chironomidae (Diptera) species diver- sity using DNA barcoding. Org Divers Evol. 2010; 10(5):397–408. doi: 10.1007/s13127-010-0034-y PMID: WOS:000284364300004.
Ekrem, T., Willassen, E., Stur, E., (2007) A comprehensive DNA sequence library is essential for identification with DNA barcodes. Mol Phylogenet Evol. 43(2):530–542. doi: 10.1016/j.ympev.2006.11.021 PMID: WOS:000246918800015.
EPA. (2001). Parameters of Water Quality: Interpretation and Standards. Environmental Protection Agency, Wexford. https://www.epa.ie/pubs/advice/water/quality/Water_Quality.pdf
FAO. (2013). Edible Insects:. Future for Food and Food Security. Wageningen ur. For Quality Life.
Fayram A. H., Wood, J. S., & Swigle, B. (2022). A comparison of genetically and morphometrically identified acroinvertebrate community index scores with implications for aquatic life use attainment. Environ. Monit. Assess. 2022; 194: 1-11.
Floss, E. C. S., Kotzian, C. B, Spies, M., & Secretti, E. (2012). Diversity of Non-Biting Midge Larvae Assemblages in the Jacuí River Basin, Brazil. Journal of insect science, 12(121):1- 3 http://dx.doi.org/10.1673/031.012.12101.
Frouz, J., Matena, J., and Ali, A., (2003). Survival strategies of chironomids (Diptera: Chironomidae) living in temporary habitats: a review. Eur. J. Entomol. 100: 459-465, 2003 ISSN 1210-5759. doi: 10.14411/eje.2003.069
Gadawski, P., Montagna, M., Rossaro, B., Giłka, W., Pešić, V., Grabowski, M., & Magoga, G. (2022). DNA barcoding of Chironomidae from the Lake Skadar region: Reference library and a comparative analysis of the European fauna. Diversity and Distributions, 00, 1–20. 10.1111/ddi.13504
Gikuma-Njuru, P., & Hecky, R. E. (2005). Nutrient concentrations in Nyanza gulf, Lake Victoria Kenya: Light limits algal demand and abundance. Hydrobiology 534: 131–140.
Grover, A., Sinha R., Jyoti, D., & Faggio, C. (2022). Imperative role of electron microscopy in toxicity assessment: a review.Microsc. Res. Tech. 2022; 85: 1976-1989.
Grzybkowska, M., Leszczyńska, J., Głowacki, L., Szczerkowska-Majchrzak, E., Dukowska, M., Szeląg-Wasielewska, E. (2020). Some aspects of the ecological niche of chironomids associated with submersed aquatic macrophytes in a tailwater.Knowl. Manag. Aquat. Ecosyst. (421) 22 (2020).DOI: 10.1051/kmae/2020015
Gutiérrez-Ravelo, A., Gutiérrez, Á. J., Paz S., Carrascosa-Iruzubieta, C., González-Weller, D., Caballero, J. M., Revert, C., Rubio, C., & Hardisson A. (2020).Toxic Metals (Al, Cd, Pb) and Trace Element (B, Ba, Co, Cu, Cr, Fe, Li, Mn, Mo, Ni, Sr, V, Zn) Levels in Sarpa Salpa from the North-Eastern Atlantic Ocean Region. International Journal of Environmental Research in Public Health, 17(19):7212. doi: 10.3390/ijerph17197212 .
Han, W., Tang, H., Wei, L., & Zhang, E. (2023). The first DNA barcode library of Chironomidae from the Tibetan Plateau with an evaluation of the status of the public databases. Ecol Evol. 2023 Feb 27;13(2):e9849. doi: 10.1002/ece3.9849. PMID: 36861023; PMCID: PMC9969238.
Hare, L. (1992) Aquatic Insects and Trace Metals: Bioavailability, Bioaccumulation, and Toxicity. Critical Review in Toxicology, 22: 327–369.
Hashim, R., Song, T. H., Muslim, N. Z., & Yen, T. P. (2014). Determination of Heavy Metal Levels in Fishes from the Lower Reach of the Kelantan River, Kelantan, Malaysia. Tropical Life Science Research, 25(2):21-39.
Hebert, P. D., Cywinska A., Ball, S. L., & DeWaard, J. R. (2003). Biological identifications through DNA barcodes. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2003; 270: 313-321.
Hübner, J. Wagner, P., Lehmann, T., & Melzer R. R. (2017). Testing species delimitation with larval morphology: scanning electron microscopy analysis of protonymphon larvae of two closely related sea spiders, Pallenopsis patagonica (Hoek) and Pallenopsis yepayekae Weis. Invertebr. Systemat. 2017; 31: 363-374.
Hutchings, P. (2017). An advocate for taxonomic research in Australia. Pac. Conserv. Biol. 2017; 25: 34-36.
ISO 4253- 3. (1840). Water quality. Sampling. Part 3: Guidance on the preservation and handling of samples, 31p. Issue 1, 2024, Pages 1 10, ISSN 16423593, https://doi.org/10.1016/j.ecohyd.2023.11.007.(https://www.sciencedirect.com/science/article/pii/S1642359323001374)
Jindal, R. & Singh, D. (2020). Diversity in attachment devices of aquatic insects in a torrential hill stream of mid Himalaya. Int. J. Aquatic Bio. 2020; 8: 253-261.
Karima, Z. (2021). Chironomidae: Biology, Ecology and Systematics. IntechOpen. doi: 10.5772/intechopen.95577.
Klaus, B., Ole, P., Walker, I., & Jensen, M. (2008) Respiration of midges (Diptera; Chironomidae) in British Columbian lakes: Oxy-regulation, temperature and their role as palaeo-indicators. Freshwater Biology 53: 593 – 602.
KPHC (2009). The 2009 Kenya Population and Housing Census.
Kranzfelder P, Anderson, A. M., Egan, A. T, Mazack, J. E, Bouchard, R. W. Jr., Rufer, M. M, Ferrington, L. C Jr. (2015). Use of Chironomidae (Diptera) Surface-Floating Pupal Exuviae as a Rapid Bioassessment Protocol for Water Bodies. J Vis Exp. 24;(101):e52558. doi: 10.3791/52558. PMID: 26274889; PMCID: PMC4545202.
Kranzfelder, P., Anderson, A. M., Egan, A. T., Mazack, J. E., Bouchard, R.W. Jr, Rufer, M. M., & Ferrington, L. C. Jr. (2015).Use of Chironomidae (Diptera) Surface-Floating Pupal Exuviae as a Rapid Bioassessment Protocol for Water Bodies. J Vis Exp. 2015 Jul 24;(101):e52558. doi: 10.3791/52558. PMID: 26274889; PMCID: PMC4545202.
Lehman, J. T., Halat, K., Betz, B., Ndawula, L. M., Kiggundu, V. (1998). Secondary production by the lake fly Chaoborus in Lake Victoria, East Africa: implications for trophic dynamics of the modern lake. In: Lehman JT, ed. Environmental Change and Response in East African Lakes. Dordrecht: Springer, 135–145
Li L., Zheng B., & Liu, L. (2010). Biomonitoring and bioindicators used for river ecosystems: definitions, approaches and trends. Procedia Environ. Sci. 2010; 2: 1510-1524.
Lin, X., Stur, E., Ekrem, T. (2015). Exploring Genetic Divergence in a Species-Rich Insect Genus Using 2790 DNA Barcodes. PLoS ONE 10(9): e0138993. doi: 10.1371/journal.pone.0138993
Liu, W. B., Wang, Y., Zhao, K. Z., Wang, C. Y., Zhang, J. Y., Yan, C. C., & Lin, X. L. (2023) New species, a new combination, and DNA barcodes of Parachironomus Lenz, 1921 (Diptera, Chironomidae). ZooKeys 1153: 121- 140. https://doi.org/10.3897/zookeys.1153.98542.
Lobo, J., Shokralla S., Costa M. H., Hajibabaei, M., & Costa F. O. (2017). DNA metabarcoding for high-throughput monitoring of estuarine macrobenthic communities. Sci. Rep. 2017; 7: 1-13.
Macadam, C.R., Stockan, J. A. (2017). The diversity of aquatic insects used as human food, Journal of Insects Food Feed, 3(3), 203–209.
Matthews-Bird F., Gosling W., and Coe A., Bush M., Mayle F., Axford Y. & Brooks S. (2016). Environmental controls on the distribution and diversity of lentic Chironomidae (Insecta: Diptera) across an altitudinal gradient in tropical South America. Ecol Evol. 6: 91-112.
McMurtrie, S. A., Sinton A. M. R., & Winterbourn M. J. (2014). Lucid identification key to the freshwater Chironomidae of Campbell Island. EOS Ecology, Christ church.
Mehmet, D., Guz, N., & Sertakaya, E. (2015). DNA barcoding of Sunn Pest adult parasitoids using Cytochrome C oxidase subunit 1 (COI). Biochemistry and Systematic Ecology, 59 DOI: 10.1016/j.base2015.01.003.
Meigen, J. W. (1804) Klassifikazion und Beschreibung der europaischen zweiflügligen Insekten. (Diptera Linn.) Erster Band. Braunschweig: Karl Reichard.
Mohamed, A. S., El- Desoky, M. A., El-Lahamy, A. A., & Gad. N. S. (2020). Influence of Environmental Pollutants on Water Quality and Biochemical Parameters of Fish Tissue. Ad Oceanogr & Marine Biol. 2(1): 2020. AOMB.MS.ID.000527.
Moller, P. H. (2013) Chironomidae Larvae. Biology and Ecology of the Aquatic Orthocladiinae. DOI: 10.1163/9789004278059.
Morse, J. C., Bae, Y. J., Munkhjargal, G., Sangpradub N., Tanida, K., Vshivkova, T. S., Wang, B., Yang, L., & Yule, C. M. (2007). Freshwater biomonitoring with macroinvertebrates in east asia. Front. Ecol. Environ. 2007; 5: 33-42.
Mrozińska, N., & Obolewski, K., (2024). Morphological taxonomy and DNA barcoding: Should they be integrated to improve the identification of chironomid larvae (Diptera)?, Ecohydrology & Hydrobiology, Volume 24,
Nell, L.A., Weng, Y., Phillips, J. S., Botsch, J. C., Book, K. R., Einarsson, A., Ives, A. R., & Schoville, S. D. (2024). Shared Features Underlying Compact Genomes and Extreme Habitat Use in Chironomid Midges, Genome Biology and Evolution, Volume 16, Issue 5, May 2024, evae086, https://doi.org/10.1093/gbe/evae086
Nicacio, G., & Juen, L. (2015). Chironomids as indicators in freshwater ecosystems: an assessment of the literature. Insect Conservation Diversity, 8: 393-403.
Nyakeya, K., Odipo, O., Raburu,P.O., Masese,F.O., Nyamora,J.M., Khasenzi,J., Mangondu, E. W., Ondiba, R. N., & Atunga,G. N. (2018). Sensitivity of the Native Chironomus Species in Monitoring of Riverine Ecosystems in the Catchments of Lake Victoria Drainage Basin ,Kenya.In conference Proceedings of the 3rd international interdisciplinary conferences CIIC-3 Held at University of Eldoret From September 7th -9th ,2016.
Oganyo, M. O., Ayieko, M. A., & Museve, E. (2022). Socioeconomic Factors Influencing The Consumption Of Lake Flies Within The Lake Victoria Region (Doctoral dissertation, International Journal of Innovative Research and Advanced Studies (IJIRAS).
Olafsson J. S. (1992) A Comparative study on mouth part morphology of certain larvae of Chironomini (Diptera: Chironomidae) with reference to the larval feeding habits. Journal of Zoology, 228(2): 183-204 https://doi.org/10.1111/j.1469-7998.1992.tb04602.x.
Olando, G., Olaka, L. A., Okinda, P. O., & Abuom, P. (2020). Heavy metals in surface sediments of Lake Naivasha, Kenya: spatial distribution, source identification and ecological risk assessment. SN Applied Science 2: 279. https://doi.org/10.1007/s42452-020 -2022-y.
Otieno, W. O., Mosi R. O., & Bulli P. (2023). Diversity Analysis of Adult Chironomidae in the Lake Victoria Basin of Kenya. Agricultura Scientia, 20(2), 41-53. https://doi.org/10.18690/agricsci.20.2.5.
Pedrosa, J., B. Cocchiararo, T. Verdelhos, C. Nowak, A. Soares, & Pes- tana. J. (2017b). Population genetic structure and hybridization patterns in the cryptic sister species Chironomus riparius and Chironomus piger across differentially polluted freshwater systems. Ecotoxicol. Environ. Saf. 141:280–289.
Popović, N., Marinković, N., Čerba, D., Raković, M., Đuknić, J., & Paunović, M. (2022) Diversity Patterns and Assemblage Structure of Non-Biting Midges (Diptera: Chironomidae) in Urban Waterbodies. Diversity 14(3):187. https://doi.org/10.3390/d14030187.
Prat, N., & Castro-López F. E. M. D. (2023). Chironomidae as indicators of water pollution in Pesquería River (México). INSECT ECOLOGY. Journal of Entomological and Acarological Research 2023; volume 55:10861
Rehman, K., Fatima, F., Waheed, I., & Akash, M. S. H. (2018). Prevalence of exposure of heavy metals and their impact on health consequences. Journal of Cell Biochemistry, 119(1):157-184. doi: 10.1002/jcb.26234.
Rodrigues, M. S., Morelli, K. A., & Jansen, A. M. (2017). Cytochrome c oxidase subunit 1 gene as a DNA barcode for discriminating Trypanosoma cruzi DTUs and closely related species. Parasite and Vectors, 10: 488 (2017). https://doi.org/10.1186/s13071-017-2457-1
Rossaro, B., Marziali, L., Montagna, M., Magoga, G., Zaupa, S. & Boggero, A. (2022). Factors controlling morphotaxa distributions of Diptera Chironomidae in freshwaters. Water [Basle], 2022, 14(7, item 1014), 1–23 + online suppl. material. [publ. online 23.iii.2022]
Ruppert, K. M., Kline, R. J., & Rahman, M. S. (2019). Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Global Ecology and Conservation, 17, e00547. 10.1016/j.gecco.2019.e00547.
SFS 3536. (1835). Sampling of the bottom fauna on soft bottoms with an Ekman grab.Pp 7.
Sharma, A., Sharma K. K., & Devi, A. (2015). The contribution of substratum heterogeneity in the diversity and distribution of macro-benthic invertebrate fauna in Ban Ganga stream, Katra, Jammu and Kashmir, India. Biol. 2015; 3: 442-445.
Sharma, K. K. & Chowdhary, S. (2011). Macroinvertebrate assemblages as biological indicators of pollution in a central himalayan river, tawi (JK). Int. J. Biodivers. Conserv. 2011; 3: 167-174.
Sharma, R. C., & Rawat, J. S. (2009). Monitoring of aquatic macroinvertebrates as bioindicator for assessing the health of wetlands: a case study in the Central Himalayas, India. Ecol. Indicat. 2009; 9: 118-128.
Showqi, I., Lone, F. A., & Naikoo, M. (2018) Preliminary assessment of heavy metals in water, sediment and macrophyte (Lemna minor) collected from Anchar Lake, Kashmir, India. Applied Water Science 8: 80. https://doi.org/10.1007/s13201-018-0720-z.
Shuhaimi-Othman, M., Nur-Amalina, R., & Nadzifah, Y. (2012). Toxicity of metals to a freshwater snail, Melanoides tuberculata. Science World Jornal, 2012, 125785. doi: 10.1100/2012/125785.
Su, X., Ling H., Wu D., Xue Q., & Xie, L. (2022). Spatial-Temporal Variations, Ecological Risk Assessment, and Source Identification of Heavy Metals in the Sediments of a Shallow Eutrophic Lake, China. Toxics 10(1):16. doi: 10.3390/toxics10010016.
Sumudumali, R.G. I. & Jayawardana, J.M.C.K. (2021). a Review of Biological Monitoring of Aquatic Ecosystems Approaches: with special References to Macroinvertebrates and pollution. Environmental managemenet (2021) 67: pgs 263- 276.https://doi.org/10.1007/s00267-02-01423-0.
Tamura K., & Nei M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10:512-526.
Tamura K., Stecher G., Kumar S: MEGA 11 (2021) Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 38(7): 3022- 3027. https://doi.org/10.1093/molbev/msab120.
Tamura, K., Peterson, D., Peterson, N., Stecher G., Nei, M., & Kumar, S. MEGA5 (2011) Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10):2731-9. doi: 10.1093/molbev/msr121.
Tamura, K., Nei, M., & Kumar S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences (USA) 101:11030-11035.
Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012), Heavy metal toxicity and the environment. Experientia Supplementum 101:133-64. doi: 10.1007/978-3-7643-8340-4_6.
U.S. Environmental Protection Agency (EPA). (2017). Water Quality Standards Handbook: Chapter 3: Water Quality Criteria. EPA-823-B-17-001. EPA Office of Water, Office of Science and Technology, Washington, DC. Accessed November 2023. https://www.epa.gov/sites/production/files/2014-10/documents/handbook-chapter3.pdf.
U.S. EPA (1840). Method 200.9. Determination of Trace Elements by Stabilization Temperature Graphite Furnace Atomic Absorption (GFAA).
U.S. EPA (1979). EPA-Methods 254.1.In Methods of Chemical Analysis of Water and Wastes. Offices of Research and Development. Washington, DC.20460.EPA/600/4-79/020(1983).
U.S. EPA. “Method 200.8 (1994), Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry,” Revision 5.4. Cincinnati, OH.
Van Huis, A., Van Itterbeecxw k, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., & Vantommxxxxe, P. (2013).Edible insects: future prospects for food and feed security (p. 201). Rome: FAO. Retrieved from http://www.fao.org/docrep/018/i3253e/i3253e.pdf.
Wink, M. (2007). Molecular modes of action of cytotoxic alkaloids: from DNA intercalation, spindle poisoning, topoisomerase inhibition to apoptosis and multiple drug resistance. The Alkaloids: Chemical Biology 1-47.
Youbi, A., Zerguine, K., Houilia, A., Farfar, K., Boudjema, S., Berrebbah, H., Djebar M. R. & Souiki, L. (2020). Potential use of morphological deformities in Chironomus (Diptera: Chironomidae) as a bioindicator of heavy metals pollution in North-East Algeria. Environ Sci Pol Res. 27:8611-8620.
Yuan, Y., Liu, B., & Liu, H. (2022). Spatial distribution and source identification for heavy metals in surface sediments of East Dongting Lake, China. Scientific Reports, 12: 7940. https://doi.org/10.1038/s41598-022-12148-x.
Zerguine, K., Bensakhri Z., Bendjeddou, D. & Khaladi O. (2018). Diversity and distribution of Chironomidae (Insecta: Diptera) of the Oued Charef basin, North-Eastern Algeria. Annales de la Société entomologique de France (N.S.). 54 (2) : 141-155DOI: 10.1080/00379271.2018.1435306.
Copyright (c) 2024 Monicah Florence Misiko, Darius Andika, Paul Oyieng Angienda, Benson Onyango

This work is licensed under a Creative Commons Attribution 4.0 International License.