Water Quality, Phytoplankton Composition, and Microcystins Concentrations in Water Pans in Narok Semi-Arid Landscape, Kenya
Abstract
Water pans in the semi-arid Narok socio-ecological landscape provide essential ecosystem services to local communities, livestock, and wildlife, but are increasingly threatened by land use changes, demographic expansion, and climate variability. There is thus an urgent need to safeguard the ecological integrity of these water bodies. This study was conducted to establish factors that determine phytoplankton and algal structure in relation to their toxins, impact on water quality, and ecosystem health from January to July 2023. Triplicate samples for phytoplankton enumeration and algal toxins were collected from twenty purposively selected water pans identified in Google Earth. Dissolved oxygen, temperature, conductivity, and pH were measured in-situ using hand-held meters while chemical concentrations were analyzed using standard procedures as guided by APHA, (2017). Enumeration and identification of phytoplankton were done at 400x magnification. Chlorophyll a concentration was determined by filtration followed by cold extraction in ethanol. Microcystin algal toxins were analyzed using the Elisa Kit Model No. 357 C. The main algal taxa identified were: Cyanophyceae, Bacillariophyceae, Chlorophyceae, Euglenophyceae, Zygnematophyceae and Dinophyceae. The most dominant algal species were Microcystis aeruginosa (25.44 %), Merismopedia spp (23.49 %), and Anabaena flos-aquae (16.06 %). Five Microcystin toxins were identified namely MC-LR, MC-YR, MC-LA, MC-RR, and MC-dmLR. Concentrations of MC-LR and MC-YR exceeded WHO acceptable standards and were significantly correlated. There was a significant difference in chlorophyll a, temperature, dissolved oxygen, conductivity, and pH among different water pans (ANOVA; p<0.05). The total phosphate concentration to total nitrogen concentration ratios (TP:TN) for all the water pans differed from the expected TP:TN ratio of 1:16. The presence of micro toxins in the water pans presents a concern over the suitability of the water for domestic, livestock, and wildlife use. This situation is likely to worsen with increasing episodes of drought, resulting in the concentration of the toxins in water
Downloads
References
Al-Khalifa, S. (2023). Assessing the vulnerability of small-scale water resources using high spatial resolution remote sensing (Master’s dissertation, University of British Columbia). https://open.library.ubc.ca/soa/cIRcle/collections/ubctheses/24/items/1.0423220
APHA. (2017). Standard methods for the examination of water and wastewater. Washington D.C: American Public Health Association. https://books.google.com/books?hl=en&lr=&id=ErAbUHJhfR8C&oi=fnd&pg=PR7&dq=APHA.+(2017).+Standard+methods+for+the+examination+of+water+and+wastewater.+Washington+D.C:+American+Public+Health+Association.&ots=2ORAt6mydI&sig=eBgMv48opUweZO3_IHMmGm142uo
Chukwu, M. N., & Afolabi, E. S. (2018). Phytoplankton abundance and distribution of fish earthen ponds in Lagos, Nigeria. Journal of Applied Sciences and Environmental Management, 21(7), 1245. https://doi.org/10.4314/jasem.v21i7.3
Cocquyt, C., & Vyverman, W. (1993). Surirella sparsipunctata Hustedt and S. sparsipunctata var. laevis Hustedt (Bacillariophyceae), a light and electron microscopical study. Hydrobiologia, 269(1), 97-101. https://link.springer.com/article/10.1007/BF00028009
Edward, J. B., & Ugwumba, A. A. A. (2010). Physico-chemical parameters and plankton community of Egbe Reservoir, Ekiti State, Nigeria.
Falconer, I. R. (2001). Toxic cyanobacterial bloom problems in Australian waters: risks and impacts on human health. Phycologia, 40(3), 228-233. https://www.tandfonline.com/doi/abs/10.2216/i0031-8884-40-3-228.1
Hallegraeff, G. M., Anderson, D. M., Belin, C., Bottein, M. Y. D., Bresnan, E., Chinain, M., ... & Zingone, A. (2021). The perceived global increase in algal blooms is attributable to intensified monitoring and emerging bloom impacts. Communications Earth & Environment, 2(1), 117.https://doi.org/10.1038/s43247-021-00178-8
Huber-Pestalozzi, G. (1968). Das Phytoplankton des Susswassers. Die Binnengewa asser, 16, 1
Khan, N. (2022). Monitoring Harmful Algal Blooms (HABS) and HAB Mitigation by Magnetic Photocatalysts. Southern Illinois University at Carbondale. https://www.proquest.com/openview/e36c6568dc260713442aed11134268e7/1?cbl=18750&diss=y&pq-origsite=gscholar
Krienitz, L., Dadheech, P. K., Fastner, J., & Kotut, K. (2013). The rise of potentially toxin-producing cyanobacteria in Lake Naivasha, Great African Rift Valley, Kenya. Harmful Algae, 27, 42-51. https://www.sciencedirect.com/science/article/abs/pii/S1568988313000620
Lung'Ayia, H., Sitoki, L., & Kenyanya, M. (2001). The nutrient enrichment of Lake Victoria (Kenyan waters). Hydrobiologia, 458, 75-82. https://link.springer.com/article/10.1023/A:1013128027773
Miruka, J. B., Getabu, A., Sitoki, L., James, O., Mwamburi, J., George, O., ... & Odoli, C. (2021). Water quality, phytoplankton composition and microcystin concentrations in Kisumu Bay (Kenya) of Lake Victoria after a prolonged water hyacinth infestation period. Lakes & Reservoirs: Research & Management, 26(4), e12380. https://onlinelibrary.wiley.com/doi/full/10.1111/lre.12380
Negi, R., & Vishal, R. (2015). Assessment of phytoplankton Diversity in Relation to Abiotic Factors of Naintal Lakes of Kumaon Himalayas of Uttarkhand State, India. Asian Journal of Scientific Research,, 8(1): 157-164. https://www.researchgate.net/publication/277661283
Nyaundi, J., Getabu, A., Mwamburi, J., Onchieku, J., Kinaro, Z., Ogendi, G., ... & Gichuru, N. (2020). Organochlorine contaminants in Nile tilapia, Oreochromis niloticus (Linnaeus 1758) in densely populated areas of south-western Kenya. Journal of Environmental Science and Engineering, 9, 153-161. https://www.davidpublisher.com/Public/uploads/Contribute/5f2393751e041.pdf
Oberholster, P. J., Botha, A. M., & Grobbelaar, J. U. (2022). Microcystis aeruginosa: source of toxic microcystins in drinking water. African Journal of Biotechnology, 3(3). https://www.ajol.info/index.php/ajb/article/view/14935
Obuya, J. A., Onyango, H. O., Olokotum, M., Zepernick, B., Natwora, K., Otieno, D., ... & Keyombe, J. L. (2024). Socioeconomic consequences of cyanobacterial harmful algal blooms in small-scale fishing communities of Winam Gulf, Lake Victoria. Journal of Great Lakes Research, 50(5), 102236. https://www.sciencedirect.com/science/article/abs/pii/S0380133023002277
Olokotum, M., Mitroi, V., Troussellier, M., Semyalo, R., Bernard, C., Montuelle, B., ... & Humbert, J. F. (2020). A review of the socioecological causes and consequences of cyanobacterial blooms in Lake Victoria. Harmful algae, 96, 101829. https://www.sciencedirect.com/science/article/abs/pii/S1568988320301086
Owino, O. A., Mokua, O. G., James, O. M., Omondi, O. S., Omondi, R., & Ombiro, O. J. (2020). Phytoplankton community structure and ecology in Lake Naivasha, Kenya. International Journal of Fisheries and Aquatic Studies, 8(3), 478-483. https://d1wqtxts1xzle7.cloudfront.net/76964639/7-4-30-511-libre
Ptacnik, R., Solimini, A. G., & Brettum, P. (2009). Performance of a new phytoplankton composition metric along a eutrophication gradient in Nordic lakes. Hydrobiologia, 633, 75-82. https://link.springer.com/article/10.1007/s10750-009-9870-1
Rastogi, R. P., Sinha, R. P., & Incharoensakdi, A. (2014). The cyanotoxin-microcystins: current overview. Reviews in Environmental Science and Bio/Technology, 13, 215-249. https://link.springer.com/article/10.1007/s11157-014-9334-6
Ray, J. G., Santhakumaran, P., & Kookal, S. (2021). Phytoplankton communities of eutrophic freshwater bodies (Kerala, India) in relation to the physicochemical water quality parameters. Environment, Development and Sustainability, 23(1), 259-290. https://link.springer.com/article/10.1007/s10668-019-00579-y
Ren, X., Wang, Y., Zhang, K., Ding, Y., Zhang, W., Wu, M., ... & Gu, P. (2023). Transmission of microcystins in natural systems and resource processes: A review of potential risks to human health. Toxins, 15(7), 448. https://www.mdpi.com/2072-6651/15/7/448
Reynolds, C. S. (1987). The response of phytoplankton communities to changing lake environments. Swiss Journal of Hydrology, 49, 220-236. https://link.springer.com/article/10.1007/BF02538504
Roegner, A., Sitoki, L., Weirich, C., Corman, J., Owage, D., Umami, M., ... & Miller, T. R. (2020). Harmful algal blooms threaten the health of peri-urban fisher communities: A case study in Kisumu Bay, Lake Victoria, Kenya. Exposure and health, 12, 835-848. https://link.springer.com/article/10.1007/s12403-019-00342-8
Simiyu, B. M., Oduor, S. O., Rohrlack, T., Sitoki, L., & Kurmayer, R. (2018). Microcystin content in phytoplankton and small fish from eutrophic Nyanza Gulf, Lake Victoria, Kenya. Toxins, 10 (7), 275. https://www.mdpi.com/2072-6651/10/7/275
Sitoki, L., Kurmayer, R., & Rott, E. (2012). Spatial variation of phytoplankton composition, biovolume, and resulting microcystin concentrations in the Nyanza Gulf (Lake Victoria, Kenya). Hydrobiologia, 691, 109-122. https://link.springer.com/article/10.1007/s10750-012-1062-8
Sharma, A. K., Kamboj, V., Sharma, A. K., Thakur, R., & Sharma, M. (2020). Water quality and its impact on phytoplankton diversity: A case study of Tehri reservoir, Garhwal Himalayas. Science Archives, 1(3), 166-173. https://pdfs.semanticscholar.org/afbb/3488d3869e6e63359ca357b9647b7e11c351.pdf
Usman, L. U., ADAKOLE, J., GADZAMA, I., & Yerima, R. (2016). Seasonal dynamics of phytoplankton abundance and diversity in Ajiwa Reservoir Katsina State, Nigeria. Nigerian Journal of Scientific Research, 15(3), 449-457. https://www.researchgate.net
Wetzel, R. G. (2000). Limnological analyses. Berlin Heidelberg Spin springer, 429. https://books.google.co.ke
Wilfred, O., Wakwabi, E., Sitoki, L., Guya, F., Jembe, T., & Ogutu, Z. (2005). Effects of physical mixing on the environment of satellite lakes and dams of Lake Victoria, Kenya. PROCEEDINGS VOLUME II, 183. https://www.researchgate.net
Xu, E., & Zhang, H. (2016). Aggregating land use quantity and intensity to link water quality in the upper catchment of Miyun Reservoir. Ecological Indicators, 66, 329-339. https://www.sciencedirect.com/science/article/abs/pii/S1470160X16300176
Zamyadi, A., Glover, C. M., Yasir, A., Stuetz, R., Newcombe, G., Crosbie, N. D., ... & Henderson, R. (2021). Toxic cyanobacteria in water supply systems: data analysis to map global challenges and demonstrate the benefits of multi-barrier treatment approaches. H2Open Journal, 4(1), 47-62. https://iwaponline.com/h2open/article/4/1/47/81062/Toxic-cyanobacteria-in-water-supply-systems-data
Copyright (c) 2025 Martha Bosibori Moseti, Samson Mabwoga, Babu Jared, Romulus Abila

This work is licensed under a Creative Commons Attribution 4.0 International License.