Diversity, Patterns of Distribution, and Bayesian Projected Trends of the Ecological Impact of Invasive Alien Plant Species in the Mount Cameroon Region
الملخص
Invasive alien plant species (IAS) are a major threat to biodiversity, ecosystem function, and sustainable land use, especially in tropical hotspots like the Mount Cameroon region. Despite its ecological significance, comprehensive data on the diversity, distribution, and projected impacts of IAS in this region have been lacking. This study systematically inventoried IAS, analysed their spatial and habitat distributions, assessed their effects on native plant communities, and modelled future expansion trends. Between September 2019 and November 2021, a field survey was conducted across 120 permanent plots (1,000 m² each) in four representative sites—Buea, Bakingili, Limbe, and Idenau-covering roadsides, farmlands, and forests. Species identification, cover estimation, and habitat characterisation followed standardised protocols. Diversity indices (Shannon-Wiener, evenness, richness, Sørensen similarity) were calculated for invaded and uninvaded plots. GIS mapping and Bayesian hierarchical modeling were employed to assess spatial patterns, environmental drivers, and project IAS expansion from 2020 to 2030. A total of 25 IAS from 16 families and 24 genera were identified, with Asteraceae and Poaceae being most salient. Annual herbs constituted 70% of the IAS flora. Species richness and evenness were highest in Buea (H’=2.57, S=17, E=0.91) and lowest in Bakingili. Roadsides and farmlands exhibited significantly higher IAS abundance than forests (p=0.036). Bayesian projections indicated a progressive expansion of IAS, with Chromolaena odorata, Tithonia diversifolia, and Eleusine indica expected to be the most aggressive invaders, and the cumulative IAS-occupied area projected to exceed 75,000 m² by 2030. Invaded sites showed marked declines in native species diversity and evenness. These findings highlight the urgent need for targeted, site-specific management interventions, particularly along roadsides and for rapidly expanding species. Integrating field inventories, GIS, and Bayesian modeling provides robust insights for prioritising eradication and control strategies to mitigate the ecological and economic impacts of IAS in the Mount Cameroon region.
التنزيلات
المراجع
Abrego, N., Norberg, A., & Ovaskainen, O. (2017). Measuring and predicting the influence of traits on the assembly processes of wood-inhabiting fungi. J. of Eco., 105(3), 1070-1081. https://doi.org/10.1111/1365-2745.12722
Anning, A. K., & Yeboah-Gyan, K. (2007). Diversity and distribution of invasive weeds in Ashanti Region, Ghana. African Journal of Ecology, 45(3):355-360. https://doi.org/10.1111/j.1365-2028.2007.00719.x
Ansong, M., Pergl, J., Essl, F. et al (2019). Naturalised and invasive alien flora of Ghana. Biological Invasions, 21:669- 683. https://link.springer.com/article/10.1007/s10530-018-1860-7
Bellard, C., Jeschke, J.M., Leroy, B. & Mace, G.M. (2018). Insights from modeling studies on how climate change affects invasive alien species geography. Ecol. Evolut., 8(11):5688-5700.
Benedetti, Y. & Morelli, F. (2017). Spatial mismatch analysis among hotspots of alien plant species, road and railway networks in Germany and Austria. PLoS One, 12(8):e0183691. https://doi.org/10.1371/journal.pone.0183691.
Bhatta, S., Joshi, L.R. & Shrestha, B.B. (2020). Distribution and impact of invasive alien plant species in Bardia National Park, western Nepal. Environmental Conservation, 47: 197–205. doi: 10.1017/ S0376892920000223.
Binggeli, P. (2005). Crop protection compendium - Cecropia peltate,1, 1-7.
Burgiel, S. W., & Muir, A. A. (2010). Invasive species, climate change and ecosystem-based adaptation: Addressing multiple drivers of global change. http://dx.doi.org/10.13140/2.1.1460.8161
Cable, S. & Cheek, M. (1998). The plants of Mount Cameroon: A conservation checklist. Review of Biodiversity, 1(1): 13-17
Cheng, J., Zhang, Y., Liu, W., Wang, C., Ma, F. & Xu, H. (2023). Distribution Patterns and Determinants of Invasive Alien Plants in China. Plants 12: 2341. https://doi.org/10.3390/plants12122341.
Chi, G., Zhou, X., & Voss, P. R. (2011). Small-area population forecasting in an urban setting: a spatial regression approach. Journal of Population Research, 28(2), 185-201. doi:10.1007/s12546-011-9053-6.
Chuyong, B.G., Duah, I. & Darkwa, K. (2019). The Morphometric Evidence and Antifungal Activity of Chromolaena odorata in Western Cameroon. Journal of Herbs, Spices and Medicinal Plants, 1- 13. https://doi.org/10.1080/10496475.2019.1636335.
Da Re, D., Tordoni, E., Negrín-Pérez, Z., Fernàndez-Palacios, J. M., et al., (2019). A spatially-explicit model of alien plant richness in Tenerife (Canary Islands) Ecological Complexity, 38(2):406- 416. http://dx.doi.org/10.1016/j.ecocom.2019.03.002
Debnath, B., Debnath, A. & Chiranjit, P. (2015). Diversity of Invasive Alien Weeds in the Major Roadside Areas of Tripura and Their Effect and Uses. J Chem Bio Phy Sci., 5(3):3091-3102.
Dogra, K.S., Kohli, R.K. & Sood, S.K. (2009). An assessment and impact of three invasive species in the Shivalik hills of Himachal Pradesh, India. Inter. Journal of Biodiversity Conservation, 1(1):004–010.
Fonge, B.A., Tchetcha, D.J. & Nkembi, L. (2013). Diversity, Distribution, and Abundance of
Plants in Lewoh-Lebang in the Lebialem Highlands of Southwestern Cameroon. International Journal of Biodiversity, 1-13. http://dx.doi.org/10.1155/2013/642579
Gelman, A., Carlin, B. J., Stern, S. H., Dunson, B. D., Vehtari, A., & Rubin, B. D. (2020). Bayesian Data Analysis, Third Edition: Boca Raton. FL: CRC Press.
Gelman, A., et al. (2014). Bayesian Data Analysis. CRC Press. Last accessed 24 February 2025
Gelman, A., & Rubin, D. B. (1992). Inference from Iterative Simulation Using Multiple Sequences. Statist. Sci., 7(4): 457-472. doi:10.1214/ss/1177011136.
GISD, (2013). Global Invasive Species Database. IUCN SSC Invasive Species Specialist Group. www.issg.org/database/welcome.
Groves, R. H., Panetta, F. D., & Virtue, J. G. (2005). Weeds of National Significance. Australian Government, Department of the Environment and Heritage.
Hejda, M., Pyšek, P. & Jarošík, V. (2009). Impact of invasive plants on the species richness, diversity and composition of invaded communities. Journal of Ecology, 97: 393–403. doi: 10.1111/j.1365-2745.2009.01480.x
Hejda, M., & Pyšek, P. (2006). What is the impact of Impatiens glandulifera on species diversity of invaded riparian vegetation? Biological Conservation, 132:143-152.
Höfle, R., Dullinger, S. & Essl, F. (2014). Different factors affect the local distribution, persistence and spread of alien tree species in floodplain forests. Basic Appl Ecol., 15: 426–434.
Hulme, P.E. (2009). Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol., 46:10–18. doi: 10.1111/j.1365-2664.2008.01600.x.
Hulme, P.E. & Bremner, E.T. (2006). Assessing the impact of Impatiens glandulifera on riparian habitats: partitioning diversity components following species removal. Journal of Applied Ecology 43:43-50.
Inderjit, P.J., van Kleunen, M. et al. (2018). Naturalized alien flora of the Indian states: biogeographic patterns, taxonomic structure and drivers of species richness. Biological Invasions, 20: 1625-1638.
Juru, V. N., Ndam, L. M., Tatah, B. N., & Fonge, B. A. (2024). Rhizospheric soil chemical properties and microbial response to a gradient of Chromolaena odorata invasion in the Mount Cameroon Region. PLOS ONE, 19(11), e0312199. https://doi.org/10.1371/journal.pone.0312199
Kariyawasam, C.S., Kumar, L. & Ratnayake, S.S. (2019). Invasive plant species establishment and range dynamics in Sri Lanka under climate change. Entropy 21(6):571. https://doi.org/10.3390/e21060571
Keenan, T. F., et al. (2018). Bayesian models for ecological forecasting and decision support. Ecological Applications, 28(8), 2062-2075.
Kenfack, V.S. (2017). How Alien invasive species impact biodiversity: The case of Cameroon. www.greenconnexion-cm.org. Last accessed April 2025.
Khuroo, A.A., Rashid, I., Reshi, Z., Dar, G.H. & Wafai, B.A. (2007). An evaluation of
knowledge and unconscious preservation of the environment: The alien flora of
Kashmir Himalaya. Biological Invasions, 9:269-292.
Kosaka, Y., Saikia, B., Mingki, T., Tag, H., Riba, T. & Ando, K. (2010). Roadside distribution patterns of invasive alien plants along an altitudinal gradient in Arunachal Himalaya, India. Mountain Research and Development 30(3):252- 258 (2010). https://doi.org/10.1659/MRD-JOURNAL-D-10-00036.1
Ljubojević, M., Narandžić, T., Ostojić, J., Božanić,T.B., Grubač, M. & Kolarov, R. (2022). Rethinking horticulture to meet sustainable development goals–the case study of Novi Sad. Serbia Horticulturae 8(12):1222. Doi:10.3390/horticulturae8121222.
Mack, R. N., Simberloff, D., & Lonsdale, W. M. (2000). Biotic invasions: Causes, epidemiology, global consequences, and control. Ecological Applications, 10(3), 689-710.
Mainali, P.K., Dan, L.W., Kunjithapatham, D., Andrew, M., Lorraine, S., et al. (2015). Projecting future expansion of invasive species: comparing and improving methodologies for species distribution modelling. Global Change Biology, 21:4464-4480.
Mehraj, G., Khuroo, A.A., Qureshi, S. et al. (2018). Patterns of alien plant diversity in the urban landscapes of global biodiversity hotspots: a case study from the Himalayas. Biodiversity and Conservation, 27:1055–1072.
Nkuinkeu, R. B., et al. (2023). Assessing the impact of invasive alien plant species on agricultural productivity in Cameroon using Bayesian models. Agricultural Systems, 197:103304.
Nsashiyi, R.S., Rahman, M.M., Ndam, M.L. & Hashizume, M. (2022). Exploiting the Bayesian approach to derive counts of married women of reproductive age across Cameroon for healthcare planning, 2000-2030. Sci Rep., 12(1):18075. doi:10.1038/s41598-022-23089-w.
Obiakara, M.C. & Fourcade, Y. (2018). Climatic niche and potential distribution of Tithonia diversifolia (Hemsl.) A. Gray in Africa. PLoS ONE, 13:9e0202421. doi: 10.1371/journal.pone.0202421
Oh, M., Heo, Y., Lee, E.J. & Lee, H. (2021). Major environmental factors and traits of invasive alien plants determine their spatial distribution: a case study in Korea. Journal of Ecology and Environment, 45:18 https://doi.org/10.1186/s41610-021-00196-9.
Oludare, A. &Muoghalu, J.I. (2014). Impact of Tithonia diversifolia (Hemsly) A. Gray on the soil, species diversity and composition of vegetation in Ile-Ife (Southwestern Nigeria), Nigeria. International Journal of Biodiversity and Conservation, 6(7):555-562.
https://doi.org/10.5897/IJBC2013.0634
Pabst, R., Dias, F.S., Borda-de-Água, L., Rodríguez-González, P.M. & Capinha, C. (2022). Assessing and Predicting the Distribution of Riparian Invasive Plants in Continental Portugal. Front Ecol Evol 10:875578. http://dx.doi.org/10.3389/fevo.2022.875578
Pyšek, P., Jan, P., Franz, E., et al. (2017). Naturalized alien flora of the world: Species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia 89(3):203-274. DOI: 10.23855/preslia.2017.203
Pyšek, P., & Hulme, P.E. (2005). Spatio-temporal dynamics of plant invasions: linking pattern to process. Ecoscience, 12:302–315.
Rai, P.K. et al. (2022). Environmental degradation by invasive alien plants in the anthropocene: Challenges and prospects for sustainable restoration. Anthropocene Science 1(1):5–28.
Richardson, D. M., Pyšek, P., & Carlton, J. T. (2000). A Global Review of Invasive Alien Plant Species. Diversity and Distributions, 6(2):93-107.
Rusdy, M. (2020). Imperata cylindrica: reproduction, dispersal, and controls. CAB Reviews, 15, 1- 9. https:// www.cabdirect.org/cabdirect/abstract/20203373911.
Seebens, H., Bacher, S., Blackburn, T.M., Capinha, C., Dawson, W., Dullinger, S., et al. (2021). Projecting the continental accumulation of alien species through to 2050. Glob Change Biol., 27:970–982. http://dx.doi.org/10.1111/gcb.15333
Sengupta, R. & Dash, S.S. (2020). Invasion Status of Three Non-Native Species from Family Asteraceae in Mizoram. Nelumbo 62(1):27–39. http://dx.doi.org/10.20324/nelumbo/v62/2020/153742
Sirbu, C., Miu, I.V., Gavrilidis, A.A., Gradinaru, S.R., Niculae, I.M., Preda, C., Oprea, A., et al. (2022). Distribution and pathways of introduction of invasive alien plant species in Romania. NeoBiota, 75:1–21. https://doi.org/10.3897/neobiota.75.84684
Srivastava, S., Dvivedi, A., & Shukla, R.P. (2014). Invasive alien species of terrestrial vegetation of North-Eastern Uttar Pradesh. Hindawi Publishing Corporation International Journal of Forestry Research, 2014, Article ID 959875: 9. http://dx.doi.org/10.1155/2014/95987
Stanaway, M. A., Reeves, R., & Mengersen, K. L. (2011). Hierarchical Bayesian modelling of plant pest invasions with human-mediated dispersal. Ecological Modelling, 222(19):3459–3469.
Stohlgren, T.J., Falkner, M.B. & Schell, L.D. (1995). A modified-Whittaker nested vegetation sampling method. The Natural Resource Ecology Lab of Colorado
State University, 17:113-121.
Tening, A. S., Fonge, B. A., & Egbe, E. A. (2013). Characteristics of volcanic soils and their impact on agriculture in the Mount Cameroon Region. African Journal of Agricultural Science, 8(4):215–222.
van Kleunen, M., Essl, F., Pergl, J., Brundu, G., Carboni, M., Dullinger, S., et al (2018). The changing role of ornamental horticulture in alien plant invasions. Biol Rev 93:1421–1437. https://doi.org/10.1111/brv.12402.
Vicente, J.R., Kueffer, C., Richardson, D.M., Vaz, A.S., Cabral, J.A., Hui, C., Araujo, M.B., et al. (2019). Different environmental drivers of alien tree invasion affect different life- stages and operate at different spatial scales. For Ecol Manage, 433:263- 275. http://dx.doi.org/10.1016/j.foreco.2018.10.065
Warton, D.I., Blanchet, F.G., O ’Hara, R.B., Ovaskainen, O., Taskinen, S., Walker, S.C., et al. (2015). So many variables: joint modeling in community ecology. Trends Ecol Evol, 30(12):766-79. https://doi.org/10.1016/j.tree.2015.09.007
Witt, A.B.R., Shackleton, R.T., Beale, T., Nunda, W. & Van Wilgen, B.W. (2019). Distribution of invasive alien Tithonia (Asteraceae) species in eastern and southern Africa and the socio-ecological impacts of Tithonia diversifolia in Zambia. Bothalia, 49:a2356. https://doi.org/10.4102/abc.v49i1.2356
Witt, A., Beale, T. & van Wilgen, B.W. (2018). An assessment of the distribution and potential ecological impacts of invasive alien plant species in eastern Africa. Transactions of the Royal Society of South Africa 73(3): 217–236. https://doi.org/10.1080/003591 9X.2018.1529003
Wittenberg, R., Simons, S.A. & Mauremootoo, J.R. (2004). Instruments and tools for assessing the impact of invasive alien species in Africa. Report Procedures under the PDF-B phase of UNEP GEF Project-Removing Barriers to invasive plant Management in Africa. CAB. International. Last accessed May 2025.
الحقوق الفكرية (c) 2025 Ndam Lawrence Monah, PhD, Aba Sihvanus Lenyuy, Juru Nzegong Victor, Awo Miranda Egbe, PhD, Toumguem Fotso Ornella, Njilar Rita Mungfu, PhD, Fonge Beatrice Ambo, PhD

هذا العمل مرخص حسب الرخصة Creative Commons Attribution 4.0 International License.