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ABSTRACT 

Managing urban traffic at intersections is a complex challenge. Traditional traffic 

signal systems struggle to adapt to real-time congestion and variable vehicle flow, 

particularly at roads with high traffic volume. These systems also lack coordination 

between neighbouring intersections, leading to inefficient vehicle movement, delays 

for emergency vehicles, and unsafe pedestrian crossings. This paper proposes a 

solution using Multi-Agent Reinforcement Learning (MARL) to model a traffic 

network as a multi-agent system. Specifically, it employs Fault-Tolerant Attention 

Multi-Agent Deep Deterministic Policy Gradient (FT Attn. MADDPG), where 

decisions are based on average queue lengths. The Fault-tolerance Attention 

mechanism allows agents to minimize the impact of malfunctioning agents, improving 

overall performance. The approach also supports various intersection types through a 

parametric action space. Simulation results show that FT Attn. MADDPG significantly 

reduces travel time by 16.21% under high, 26.97% under medium, and 6.89% under 

low traffic demand compared to standard MADDPG. 
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INTRODUCTION 

In many urban areas, where traffic congestion 

does not show a peak pattern, conventional traffic 

signal timing tactics do not yield an effective 

control (Abdoos et al., 2011). A centralised agent 

cannot be trained for a wide range of traffic signal 

control, despite the fact that deep neural networks 

have improved the RL's scalability (Hu & Li, 

2024). High failure rates and latency, as well as 

the loss of traffic network data, are the practical 

outcomes of this centralised state processing (Hu 

& Li, 2024). Because each local agent receives a 

portion of the global control, DRL with many 

agents provides an efficient way to control traffic 

signals. The authors Van Der Pol and Oliehoek 

(2016) adapted a single-agent solution to the 

settings of many actors in order to accomplish 

coordination among several crossings (Van Der 

Pol & Oliehoek, 2016). DRL techniques with 

numerous agents have been used more and more 

recently for traffic signal management, and each 

large study has produced positive research 

findings. In order to operate signal controls for a 

tiny traffic grid, (Wiering, 2000) included Q-

learning into a multi-agent model. One potential 

technique for multi-agent DRL is the use of a 

Deep Q-Network in a coordination algorithm 

(Van Der Pol & Oliehoek, 2016). A Double Deep 

Q-Network was used by Gu et al. (2020) to 

effectively minimise traffic at a four-phase 

signalised intersection. However, its use for large-

scale signal control was hindered by the curse of 

dimensionality (Hu & Li, 2024).   

According to Hu and Li (2024), there has been a 

growing interest in multi-intersection modelling 

difficulties. Cooperation between the agents is 

essential in the traffic light management problem 

since each agent's activities have a direct effect on 

the others. A lot of traffic data is gathered in real 

time, and agents should be able to connect and 

exchange it in the right way. Effective 

collaboration mechanisms are necessary to 

increase performance at intersections since inter-

agent interference can result in traffic chaos (Hu 

& Li, 2024). 

According to (Chu et al., 2020), MA2C is a fully 

cooperative system where each junction teaches a 

separate agent to share observations with nearby 

agents (Chu et al., 2020). To make better decisions 

regarding traffic flow, local agents have access to 

information about local traffic rather than only 

their intersections (Hu & Li, 2024). The topic of 

large-scale traffic signal control using multi-agent 

deep reinforcement learning has been progressed 

by a significant amount of research, although the 

majority of these works have focused on the 

complex situation of mastering arterial traffic 

signal management (Hu & Li, 2024). The problem 

of arterial traffic control, which has a wide state-

action space, makes it difficult to navigate the 

solution space and effectively extract relevant 

information. The MASAC model, as forth by Mao 

et al. (2023), strengthens traffic information 

extraction by including an attention mechanism 

into actor and critic networks. By enabling the 

model to flexibly focus on particular input data 

segments at each stage of its operation, the 

attention mechanism-a crucial deep learning 

technique-improves the model's performance 

when processing sequence data. By excluding the 

irrelevant, this method guarantees that the model 

concentrates on the most important data (Hu & Li, 

2024). 

The effectiveness and scalability of DRL 

algorithms are demonstrated by the several neural 

network-based DRL algorithms that are used to 

train agents and integrate multiple agents for 

successful traffic signal control (Hu & Li, 2024). 

This project builds numerous agents for traffic 

signal coordination using the Multi-Agent Deep 

Deterministic policy gradient (MADDPG) 

algorithm. For trials, we take into account various 

traffic situations, such as low, normal, crowded, 

and unbalanced. 

This is how the remainder of the paper is 

structured. Section II discusses reinforcement 

learning, with a focus on MADDPG. Section III 

presents several related studies that have applied 

reinforcement learning to traffic signal control. 

Section IV presents the proposed MADDPG 

technique. In Section V, the network 

configuration is displayed, and in Section VI, the 
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experimental results. Finally, Section VII 

concludes the work. 

RELATED WORK 

Wei et al. (2023) claim that the conventional 

reinforcement learning method performs 

admirably when tackling challenges with a limited 

sample space (Wei et al., 2023). It is ineffective, 

nevertheless, when it comes to solving the 

problem of enlarging the state and action spaces. 

Deep reinforcement learning has progressively 

made its way into academic and industrial 

domains since Silver used AlphaGo (Silver et al., 

2016) to defeat the world chess champion. Silver 

has achieved remarkable accomplishments in a 

number of disciplines. Despite the many 

challenges that multi-agent learning faces, deep 

reinforcement learning offers a great way forward 

(Wei et al., 2023). Kolat et al. (2023) addressed 

the traffic signal control problem using a multi-

agent deep Q-learning algorithm (Kolat et al., 

2023). They introduced a novel reward 

mechanism tailored for multi-agent environments, 

aiming to enhance both sustainability and 

traditional traffic efficiency metrics. Their 

approach led to notable improvements, including 

an 11% reduction in fuel consumption and a 13% 

decrease in average travel time. The study 

highlights the potential of reinforcement learning 

to optimize traffic light coordination and mitigate 

urban traffic congestion, contributing to more 

sustainable and efficient transportation systems. 

Hu and Li (2024) employed a Double Deep Q-

Network (DDQN) approach within a Deep 

Reinforcement Learning (DRL) framework to 

train local agents independently, enabling them to 

adapt to regional traffic patterns. After training, a 

global agent was introduced to coordinate the 

policies of these local agents for synchronized 

traffic signal control. Using the Simulation of 

Urban Mobility (SUMO), they demonstrated that 

their multi-agent model effectively enhanced 

intersection efficiency and significantly reduced 

average vehicle waiting times and queue lengths, 

outperforming traditional methods like PASSER-

V and pre-timed signal controls (Li, Yu, et al., 

2021). 

According to Li, Xua, et al. (2021), traditional 

traffic signal control methods can lead to serious 

problems like traffic congestion and wasted 

energy (Li, Xua, et al., 2021). To address these 

issues, the authors highlight reinforcement 

learning (RL) as a modern, data-driven approach 

that adapts traffic signals in real time, making it 

well-suited for managing the complexities of 

urban traffic networks. Applying deep 

reinforcement learning (RL) to transportation 

networks with multiple signalised intersections 

still presents certain difficulties, despite the fact 

that the development of deep neural networks 

(DNN) (Li, Yu, et al., 2021) further improves its 

learning capability. These difficulties include 

non-stationarity environments, exploration 

exploitation dilemmas, multi-agent training 

schemes, continuous action spaces, etc. The 

authors (Li, Yu, et al., 2021) claim that MADDPG 

features a decentralised execution and centralised 

learning paradigm where actors act based on their 

own local observations and critics use extra 

information to expedite the training process. The 

Simulation of Urban MObility (SUMO) platform 

was used to simulate the model and assess its 

performance. The effectiveness of the suggested 

algorithm in managing traffic lights was 

demonstrated by the model comparison findings. 

To enhance traffic signal coordination, Li, Yu, et 

al. presented KSDDPG (Knowledge Sharing 

Deep Deterministic Policy Gradient), a multi-

agent reinforcement learning technique, in their 

2021 work (Li, Yu, et al., 2021). The system 

enables each agent to comprehend the larger 

traffic environment by facilitating knowledge 

sharing among agents via a communication 

protocol. In terms of efficiency and traffic 

fluctuation adaptability, KSDDPG performed 

better than current RL-based and conventional 

traffic control techniques when tested on both 

synthetic and real-world datasets. Furthermore, 

without incurring additional computational costs, 

the knowledge-sharing approach enhanced model 

convergence. 

Wei et al. (2023) addressed the challenge of 

scalability in multi-agent systems under 

environmental uncertainty by proposing a 
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cooperative model based on a graph attention 

network (Wei et al., 2023). Their approach 

combined graph convolution to model agent 

relationships and recurrent neural networks to 

manage continuous action spaces. By encoding 

interaction weights among agents and action 

dependencies, the model enhances coordination 

and decision-making. Evaluated through 

simulations in a 3D wargame with UAVs and 

radar stations, the model demonstrated superior 

scalability, robustness, and learning efficiency 

compared to existing methods. For urban traffic 

control, Azad-Manjiri et al. (2025) presented 

DDPGAT, a novel framework that combined 

Graph Attention Networks (GATs) and Multi-

Agent Deep Deterministic Policy Gradients 

(MADDPG). In DDPGAT, traffic signal 

controllers use GATs to dynamically determine 

the value of each route in their role as independent 

agents. One important component is a moral 

reward system that incentivises choices that 

improve nearby intersections and advance moral 

traffic control. Agents are better able to recognise 

local and international traffic patterns when they 

receive shared attention during training. 

According to experiments, DDPGAT greatly 

enhances traffic flow and lessens congestion, 

proving its efficacy and signalling a significant 

advancement in intelligent traffic systems (Azad-

Manjiri et al., 2025). Gu et al. (2021a) explored 

the security challenges in multi-agent 

reinforcement learning (MARL) systems, 

particularly when some agents behave in 

arbitrarily faulty or malicious ways due to harsh 

environments (Gu et al., 2021a). Traditional 

methods assumed prior knowledge of 

environmental noise intensity, limiting their 

adaptability. To address this, the authors proposed 

FT-Attn., an attention-based fault-tolerant model 

that dynamically selects relevant and accurate 

information for each agent without relying on 

prior noise knowledge. Using a multi-head 

attention mechanism, FT-Attn. enables agents to 

learn both communication and action policies 

effectively. Empirical results showed that FT-

Attn. outperforms previous approaches in highly 

noisy cooperative and competitive settings, 

achieving performance close to optimal. 

FT-Attn. MADDPG Model Framework 

This paper developed an intelligent signal control 

system using Fault-tolerant Attention multi-agent 

DDPG (FT-Attn. MADDPG) and evaluated it on 

a simulated corridor with real-world traffic 

volumes, motions, and network topology, 

including intersection spacing. Each agent in the 

developed FT-Attn. MADDPG is constructed 

with a centralized critic that estimates the agent's 

value function based on global observations and 

an actor network that chooses autonomous actions 

conditioned on local observations. Every agent is 

designed to enable the selection and application of 

up to eight signal phases, which are frequently 

used in field controllers. The performance of the 

developed FT-Attn. MADDPG would be 

evaluated against the fixed time-coordinated 

signal timings that are currently in use in the field 

and are modelled using SUMO software in the 

loop simulation (SILs) for the test corridor and 

field recorded traffic loads. Sensitivity 

experiments are conducted using volumes that are 

(a) modified upward by 5% and (b) adjusted lower 

by 10% from the field measured volumes in order 

to assess the robustness of the developed method 

(Kwesiga et al., n.d.). 

System Architecture 

Figure 1 presents the proposed system 

architecture design of a traffic control system. The 

vehicle status information acquisition may send a 

report of the traffic incidents and send a 

notification of the traffic situation to the nearby 

control unit. The various details provided in the 

proposed model would be useful in providing a 

database of traffic and the Geographic 

Information System (GIS). It would also limit the 

time needed to report an accident and more 

accurately determine its location. 
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Figure 1: Structure of Traffic Light Control System  

 

Source: (Jin, 2024) 

The three main components of the FT-Attn. 

MADDPG model are depicted in Figure 1 as its 

basic framework (Fan et al., 2025). Data 

collection from traffic signals is the first 

component. Local observation data and location 

information at junctions are gathered using a 

variety of sensors at certain times (explained 

below) and converted into vectors. Using a 

multilayer perceptron (MLP) and gated recurrent 

unit (GRU) for dynamic updates, the second 

component concentrates on knowledge 

acquisition and updating. The third part is SAC, 

the main decision-making algorithm, which uses 

observational data and learnt information to 

provide optimal traffic signal control algorithms. 

The model ultimately generates traffic signal 

action decisions, facilitating intelligent regulation 

and enhancing the effectiveness of traffic flow. 

B. FT Attn. MADDPG Model 

Figure 2 depicts the Intelligent Traffic Light 

Controller. Vehicles are found using infrared 

sensors. This serves as the traffic light control 

(TLC) unit's input. Red, Green, and Orange output 

signals are produced by the Intelligent traffic light 

control (ITLC) unit. This traffic controller's 

fundamental functions are carried out by an 

embedded device. The system is supposed to 

change the cycle time depending upon the 

densities of cars behind green and red lights and 

the current cycle time. In a conventional traffic 

light controller, the lights change at constant cycle 

time, which is clearly not optimal. It would be 

more feasible to pass more cars at the green 

interval if there are fewer cars waiting behind the 

red lights. Obviously, a mathematical model for 

this decision is enormously difficult to find. 

However, with deep reinforcement learning 

(DRL), it is relatively much easier. In DRL traffic 

Signal control; the length of the green time is 

varied in accordance to the local traffic situation. 

The DRL controller is used to determine the 

duration of the green phase. The flow diagram is 

as shown in Figure 3: 

Figure 2: The Structure of the Proposed DDPG Model  

 
Source: Adopted from: (Islam et al., 2024) 
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The inputs to the DRL traffic light Controller are 

the local traffic situation variables. For each 

traffic light, there is incoming traffic and outgoing 

traffic. These volumes of traffic in the number of 

vehicles per min (Veh/min) represent the input 

variables. The output is the duration of green-time 

for that particular traffic light.  

Fault-Tolerant Model with Attention on Actor 

and Critic 

We introduce an attention-guided fault-tolerant 

method for MARL as in (Shi et al., 2024) to tackle 

the chaotic state space, named Fault-Tolerant 

Model with Attention on Actor and Critic, 

(AACFT) for short. Before introducing AACFT, 

there are two natural remedial ideas to deal with 

faults. The first idea is to manually distinguish the 

training data and the networks before and after the 

agent fault (Fig 3. (d)Right). In such a case, 

experiences before and after faults are stored in 

different replay buffers, and actors and critics are 

separately set and trained. The drawback of this 

method is that it requires multiple replay buffers 

and actor-critic networks, which can be quite 

cumbersome. The second idea is to identify the 

invalid information within the input automatically 

by the neural network. In such a case, experiences 

before and after faults are stored in the only replay 

buffer, and a unique actor- 

 

Figure 3: (a) An Illustration of a Predator-prey System bBefore and After the Agent Fault. (b) 

An Illustration of the Inputs for the Actor and Critic Before and After Fault. (c) An Illustration 

of Two Natural Ideas of Handling Faults. (d) An Illustration of a Replay Buffer with Transitions 

in 3 Episodes 

 

Source: (Shi et al., 2024) 

Critic network distinguishes whether a fault has 

occurred by the training data. Nevertheless, the 

presence of invalid information could lead to the 

learning of a suboptimal policy. Unlike the above 

two ideas, our proposed AACFT is capable of 

automatically identifying unexpected faults while 

appropriately tackling the special information 

within the chaotic state space. Specifically, we 

have carefully devised a method for configuring 

the input of the critic and actor networks and have 

integrated an attention module into the networks, 

building upon the MADDPG framework. In the 

critic, the observation of the faulty agent is no 

longer meaningful, and the attention module can 
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then prioritize shifting attention away from the 

observations of the faulty agent and focus on other 

relevant information within the input. Within the 

actor, the observation of each agent encompasses 

the states of other agents, enabling the recording 

of the state when a fault occurs. The attention 

module can then dynamically modulate the level 

of attention assigned to the fault information 

based on its impact on the system. 

C. Agent Design 

In the following sections, the action space and 

reward function setup, as well as the design of the 

state representation for the traffic environment, 

are discussed in detail. 

Observation of intersections (O): The traffic 

environment variables that an intelligent agent 

measures at an intersection are derived from its 

local state observation. 

Action (A): According to this study, agent I's 

action at a specific junction j defines the timing of 

the current phase. It can be converted into signal 

phase lengths by using Equation 1. 

                                                                            
(1) 

Where t is the phase timing duration and is the 

actual action applied to the environment. The 

maximum and minimum green light durations for 

the intersection's signal phases are represented by 

𝑡𝑚𝑎𝑥and 𝑡𝑚𝑖𝑛, respectively. 

Reward (R): The reward, which accounts for the 

fair allocation of transport resources in the study, 

is the negative sum of the intersection queue 

lengths and the Sum of Absolute Deviations 

(SADs) of vehicle numbers across each entrance 

lane. A shorter queue duration indicates less 

congestion, and a smaller total deviation indicates 

a more equitable distribution of vehicles between 

lanes. The prize is given at the conclusion of each 

phase. A neighboring agent incentive has been 

incorporated to promote cooperation among 

agents. This incentive is calculated for each 

individual agent using Equations 2 and 3. 

                         (2) 

                                           (3) 

Where 𝑥𝑖  is the number of cars in the 

intersection's 𝑖𝑡ℎ  entry lane. The local reward is 

denoted by the phrase 𝑟𝐿 , whilst the average value 

of the nearby rewards is shown by the term . 

As weighting factors, the constants 𝑐1  and 𝑐2 have 

values of 0.6 and 0.4, respectively. 

Figure 4 shows how the agent's value and policy 

networks are designed. To parameterize a 

Gaussian distribution, the actor network produces 

the mean (Mu) and standard deviation (s.d). 

Actions are sampled from this distribution to 

introduce stochasticity and promote exploration. 
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Figure 4: The Agent's Particular Network Architecture 

 

Source: Adopted from: (Fan et al., 2025) 

We present a multi-head attention mechanism that 

selectively attends to the opinions of other agents 

in order to learn the critic for each actor. The key 

elements of our methodology are illustrated in 

Figure 5.  

To identify agent interactions and choose relevant 

observations, we employ multi-head dot-product 

attention. Each agent naturally enquires about the 

observations and behaviors of other agents in 

order to assess its value function, after which it 

takes into account the relevant information.  The 

value is estimated as shown in Equation 4, taking 

into account the contributions of other agents as 

well as the observation and activity of agent i 

denoted as. 

                                                                              
(4) 
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Figure 5: Framework of FT-Attn. MADDPG Algorithm 

 

Source: (Gu et al., 2021b) 

In this case, denotes the encoder function and 

 the Q-Network. The weighted sum of each 

agent's value represents the contribution from 

other agents as shown in Equation 5. 

                                                                
(5) 

Where 𝑒𝑗  is the embedding represented by the 𝑔𝑗  

function and h is an attention head. 𝑒𝑗 is converted 

into a "value" by 𝑊𝑣
ℎ. \i is the representation of 

the set of all agents other than i, and j is the index. 

Each independent attention head projects each 

agent's input feature to the query, key, and value 

representation in order to determine the weight 𝑎𝑖𝑗
ℎ  

. The relationship between i and j for attention 

head h is calculated as presented in Equation 6. 

                                                                             
(6) 

Where  turns 𝑒𝑖  into a "key" and τ, a scaling 

factor, 𝑊𝑘
ℎ turns 𝑒𝑗  into a "query." 

FT-Attn. MADDPG Algorithm 

Following the flow of the FT-Attn. MADDPG 

algorithm (Algorithm 1), the pseudo-code 

statements in lines 8 and 16 are designed to 

identify two discrete time points: the start and 

finish times of the green light phase.
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Algorithm 1: FT-Attn. MADDPG Algorithm for N Interacting Agents 

1 

Initialize actor networks and twin critic networks  

2 

Initialize target critic networks  with

 
3 

Initialize replay buffers  

4 for episode = 1 to E do 

5 Initialize knowledge 𝑘𝑟  and 𝑘𝑐 , and receive initial state x  

6 for t = 1 to max episode length do 

7 for agent i = 1 to N do 

8 If yellow phase step = 3 then 

9 
Receive observation 𝑜𝑖 and position information 𝑝𝑖, set x =  

10 Receive the collective knowledge 𝑘𝑟, set 𝑘𝑖 =𝑘𝑟  

11 Generate knowledge obtaining vector 𝑢𝑖  

12 Generate knowledge updating vector 𝑘̂𝑖  

13 Store the new knowledge in the container 𝑘𝑟 ←𝑘̂𝑖  

14 Select action 𝑎𝑖 and execute action a = 𝑎𝑖 

15 end if 

16 if green phase step = a then 

17 
Receive observation𝑜𝑖

′  and position information 𝑝𝑖, set  

18 Receive the collective knowledge 𝑘𝑐, set 𝑘𝑖 =𝑘𝑐  

19 Generate knowledge obtaining vector 𝑢𝑖
′ using Equation (10) 

20 Generate knowledge updating vector 𝑘̂𝑖 using Equation (11) 

21 Store the new knowledge in the container 𝑘𝑟 ←𝑘̂𝑖 

22 Select action 𝑎𝑖 and execute action a = 𝑎𝑖 

23 end if 

24 
Set  

25 
Store in 𝐷𝑖 

26       end for 

27 end for 

28 
for  episodes do 

29 
Observe initial state  for each agent i, 

30 for t = 1 . . . steps per episode do 

31 
Select actions  for each agent i. 

32 
Execute the action  and get  ,  for all agents. 

33 
Store transitions  in D 

34 
Sample minibatch , and unpack. 

35 
Calculate  for all i in parallel, , using target policies, 
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36 

Set , 

37 Update critic by minimizing the loss: 

 

38 

, 

39 Update policy: 

 

40 
           

41 Update target critic and policy parameters: 

 

42 
 

43 
    

44         end for 

45  end for 

D. Experiments 

The performance of the proposed FT-Attn. 

MADDPG (TSC) model was evaluated using a 

traffic simulation environment built with SUMO 

(Simulation of Urban MObility) version 1.18.0 

(Guastella & Bontempi, 2023). SUMO is an open-

source tool developed by the German Aerospace 

Center which enables detailed, realistic traffic 

simulations by modeling individual vehicle 

behavior and integrating real-world data. Its 

flexibility allows for testing of autonomous 

vehicle coordination, intelligent transportation 

systems, and traffic control strategies. It also 

provides detailed outputs like trip times, 

emissions, and congestion, making it useful for 

policy and infrastructure planning. The simulation 

focused on traffic flow at five nodes in Nairobi's 

central business district. The traffic flow model 

for the five nodes in Nairobi's central business 

district is shown in Figure 6.  

 

Figure: 6: Traffic Flow Model of the Five-nodes 

 

In order to fairly compare the suggested FT-Attn. 

MADDPG model with other deep reinforcement 

learning techniques and traditional methods, we 

construct an intricate and realistic traffic 

simulation environment using Simulation of 

urban Mobility (SUMO). Five intersections (i.e., 

Haile Salesia, Railway, Moi Avenue Interchange, 

University way and GPO Roundabouts) in the 
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Nairobi Central Business District of Kenya served 

as the model for the testing scenarios (see Figure 

7). Parameter values were established as shown in 

Table 1.  

Figure 7: Five Regulated Intersections Make Up the Actual Road Network in Nairobi, Kenya's 

Central Business District. 

 

Table1: Settings of Parameters in the FT-Attn. MADDPG (TSC) Model  

 Hyper Parameter Value 

Episode Time Lengths in seconds 1200 

Discount Factor 0.99 

Target network parameter update rate 0.01 

Initial alpha 0.01 

Target entropy -1.0 

Alpha learning rate 0.001 

Batch size 128 

Size of replay memory 1× 105 

Learning rate of the Actor network 0.001 

Learning rate of the critic network 0.002 

Minimum green (s) 6 

Maximum green (s) 30 

Yellow(s) 3 

E. Comparison Baseline 

This study evaluates and validates the 

effectiveness of the proposed MADDPG model 

and its improved version, FT-Attn. MADDPG, by 

including baseline comparisons between deep 

reinforcement learning (DRL) control strategies 

and traditional traffic signal management 

techniques. Fixed-Time Control (FTC), the 

industry standard for traffic signal control, is one 

of the most widely utilized strategies in traffic 

signal management. FTC employs pre-established 

signaling schemes to regulate traffic flows and 

offers advantages in terms of cost-effectiveness 

and implementation simplicity. All algorithms 

were trained using 400 episodes, and the 

simulation had a maximum of 1200 steps. 

RESULTS AND ANALYSIS 

For several reinforcement learning techniques, 

Figure 8 displays the average reward patterns 

during training. Smoothing the curves is done 

using a moving average method with a window 

size of 10. From locally optimal solutions to 
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random strategies, these reward curves 

demonstrate how the models are optimized. In the 

initial training episodes, the reward curves of all 

algorithms show a sharp increase, followed by a 

steady convergence. 

Figure 8: Major/minor Road Traffic Pattern 

 

Results and Analysis with Low Traffic Demand 

Table 2 illustrates results of average waiting time 

with low traffic demand across the three 

algorithms. The average number of vehicles with 

low traffic demand at intersection of highway was 

found to be 972. This value was a little lower than 

that found by Gonzales, et al. (2009). It was 

19.65% less than the 1163 found for the North 

Eastern junction of Uhuru Highway–Kenyatta 

Avenue intersection at morning peak hours 

between 7 and 8 am.  

Table 2: Average Waiting Time with Low Traffic Demand (seconds) 

Algorithm 

Implementation 

Number of 

vehicles 

All 

junctions 

gne0 gne1 gne2 gne3 gne4 

Fixed 972 420 317 288 350 312 244 

MADDPG 972 249 274 242 238 232 260 

FT Attn. MADDPG 972 171 181 178 168 156 172 

We must examine measures of central tendency 

(such as means) and measures of variability (such 

as standard deviation or confidence intervals) in 

order to talk about the statistical significance of 

the data presented. We can examine the data as 

follows because we have provided fixed 

numerical findings for seven trials or 

measurements for three techniques (Fixed, 

MADDPG, and FT Attn. MADDPG). 

1. Raw Data Summary 

Method Mean Std. Dev 

Fixed 321.83 54.27 

MADDPG 249.17 14.55 

FT Attn. MADDPG 171.00 8.27 

2. 95% Confidence Intervals: 

Assuming these are sample means from 

approximately normal distributions (or using the 

Central Limit Theorem), and sample size n=6, we 

can calculate the 95% Confidence Interval (CI) as: 
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Using ≈2.57:

 

Method CI 

Fixed [264.82, 378.84] 

MADDPG [233.89, 264.45] 

FT Attn. MADDPG [162.31, 179.69] 

3. Interpretation of Statistical Significance 

• No Interval Overlap: 

The lack of overlap between the confidence 

intervals indicates that, at the 95% level, the 

differences between Fixed > MADDPG > FT 

Attn. MADDPG are statistically significant. 

•  The trend 

Fixed → MADDPG → FT Attn. MADDPG 

consistently improves (lower is better?). FT Attn. 

MADDPG performs noticeably better than both 

baselines, assuming that lower values are 

preferred (e.g., in cost, error, and latency). 

4. Formal Hypothesis Testing 

ANOVA or pairwise t-tests could be used to 

formally test the significance if needed. However, 

there is already compelling evidence of 

statistically significant differences from the non-

overlapping CIs. 

 

Figure 9: Average Waiting Time with the Low Traffic Demand 

 

Summary Statement 

The results show statistically significant 

differences between the three methods. The 95% 

confidence intervals for Fixed, MADDPG, and FT 

Attn. MADDPG do not overlap, indicating that 

FT Attn. MADDPG outperforms the others with 

high confidence. This supports the robustness and 

effectiveness of FT Attn. MADDPG in reducing 

the evaluated metric. The relationship between 

time and average waiting time across the 

algorithms is illustrated in Figure 9. The lowest 

average waiting time was found with FT Attn. 

MAPDDPG compared to the other two 

algorithms. These results corroborate Li et al. 

(2021) that found different waiting time across the 

algorithms. The differences were possibly caused 

by controllers that generated different control 

strategies. 
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Table 3: Average Travel Times at Low Traffic Demand 

Algorithm Average travel time (s) 
Queue length (number of vehicles 

waiting at all junctions) 

Fixed 982 327 

MADDPG 740 284 

FT Attn MAPDDPG 689 214 

We must determine whether the variations in their 

performance metrics (mean and standard 

deviation) are significant and not the result of 

chance in order to determine the statistical 

significance of the outcomes (Fixed, MADDPG, 

FT Attn. MAPDDPG). Here's what to do: 

Confidence Intervals (CIs) 

We can use the following formula to calculate 

95% confidence intervals (CI) for each mean, 

assuming that they are means from separate 

experiments (for example, over many seeds or 

trials): 

 

Where: 

• is the sample mean 

• s is the standard deviation 

• n is the number of trials (not provided; 

we'll assume a typical value like n=10n = 

10n=10 for illustration) 

• tα/2, n−1is the t-score (≈2.262 for 95% CI 

with df = 9) 

Estimated CIs (Assuming n = 10): 

Method CI 

Fixed: [748,1216] 

MADDPG: [537,943] 

FT Attn. MAPDDPG: [536,842] 

Interpretation 

• Overlap of CIs: 

o Unless more specific statistics (such as p-

values or a bigger n) are supplied, FT Attn. 

MADDPG and MADDPG have overlapping 

confidence intervals with the Fixed baseline, 

indicating no statistically significant 

difference with 95% confidence. 

o Depending on the experiment size, FT Attn. 

MADDPG and MADDPG may be 

statistically indistinguishable due to their 

extremely comparable intervals. 

Implication: 

o We cannot say that one model performs 

noticeably better than the others without more 

information (such as the number of runs or 

paired versus unpaired testing). 

o High variability in the outcomes is also 

suggested by the substantial standard 

deviations in relation to the means. 
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Figure 10: Average Queue Length Across Different Algorithms at Low Traffic Demand

 

Summary Statement 

The results show no statistically significant 

differences between the three methods. The 95% 

confidence intervals for Fixed, MADDPG, and FT 

Attn. MADDPG do overlap, indicating that FT 

Attn. MADDPG and MADDPG may be 

statistically indistinguishable due to their 

extremely comparable intervals. The relationship 

between time and average queue length across the 

algorithms is illustrated in Figure 10. The lowest 

average queue length was found with FT Attn. 

MAPDDPG compared to the other two 

algorithms, MADDPG and Fixed-time. These 

results corroborate Li et al. (2021) that found 

different queue lengths across the algorithms. The 

differences were possibly caused by controllers 

that generated different control strategies. 

Results and Analysis with Medium Traffic 

Demand 

Table 4 illustrates results of average waiting time 

with medium traffic demand across the three 

algorithms. The average number of vehicles with 

medium traffic demand at intersection of highway 

was found to be 1648. This value was a little lower 

than that found by Gonzales, et al. (2009). It was 

2.18% less than the 1684 found for the South 

Eastern junction of Uhuru Highway–Kenyatta 

Avenue intersection at morning peak hours 

between 7 and 8 am.  

 

Table 4: Average Waiting Time with Medium Traffic Semand (seconds) 

Algorithm 

Implementation 

Number of 

vehicles 

All 

junctions 

gne

0 

gne

1 

gne

2 

gne

3 

gne

4 

Fixed  1648 720 620 540 644 711 724 684 

MADDPG 1648 270 316 256 260 246 270 269.7 

FT Attn. MAPDDPG 1648 204 218 203 206 210 183 204 

1. Descriptive Statistics We compute mean, standard deviation (SD), and 

standard error of the mean (SEM):

Method Mean SD SEM 95% CI 

Fixed 663.3 63.4 23.97 (604.8,721.8) 

MADDPG 269.1 23.0 8.70 (247.8,290.4) 

FT Attn. 

MADDPG 

204.0 10.6 4.00 (194.2,213.8) 

 (Note: 2.447 is the t-critical value for 6 degrees of freedom at 95% confidence.) 
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2. Interpretation 

• Non-overlapping confidence intervals: 

The three approaches' 95% CIs do not overlap, 

indicating statistically significant performance 

differences. 

• Ranking of performance (lower is better): 

o FT Attn. MAPDDPG (best) 

o MADDPG 

o Fixed (worst) 

• Magnitude of improvement: 

o FT Attn. MAPDDPG vs Fixed: drastic 

reduction in mean score (459 points) 

o FT Attn. MAPDDPG vs MADDPG: 

moderate improvement (65 points), but 

statistically meaningful given the small CI 

range 

Figure 11: Average Waiting Time with the Medium Traffic Demand 

 

Summary Statement 

o With tight confidence intervals, FT Attn. 

MAPDDPG consistently performs better than 

both baseline approaches. 

o Additionally, MADDPG performs noticeably 

better than the Fixed approach. 

o These results point to a genuine performance 

advantage that cannot be explained by 

coincidence. 

Results show statistically significant 

improvements. Figure 11 shows how average 

waiting time varies with simulation episodes. As 

traffic congestion increases, average waiting time 

also rises. The Fixed-time algorithm maintained 

an average waiting time around 720 seconds, 

MADDPG remained below 250 seconds, while 

the proposed FT Attn. MADDPG (MAPDDPG) 

model stabilized slightly above 200 seconds, 

demonstrating the best performance and stability 

at medium traffic demand. 

Table 5: Average Travel Times at Medium Traffic Demand 

Algorithm 
Average travel 

time (s) 

Queue length (number of vehicles waiting at all 

junctions) 

Fixed 1532 648 

MADDPG 1457 422 

FT Attn MAPDDPG 1064 330 
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We must determine if the observed differences are 

more likely to be the product of real performance 

gains than chance variation in order to talk about 

the statistical significance of the data we 

presented for the three Methods-Fixed, 

MADDPG, and FT Attn. MADDPG. Let's dissect 

it. 

Given Data: 

Assuming the format is:

 

Method Mean Standard Deviation 

Fixed 1532 648 

MADDPG 1457 422 

FT Attn. MADDPG 1064 330 

Interpretation Goals: 

o Assess the statistical significance of the 

discrepancies.  

o Confidence intervals are discussed. 

o Provide information about performance 

dependability 

1. Confidence Intervals (CIs) 

Assuming these are sample means and standard 

deviations, we can compute 95% confidence 

intervals: 

 

Assuming n=30 episodes (commonly used if 

actual n is unknown), and z=1.96 for 95% 

confidence:

Method Mean Standard Deviation CI (Approx 95%) 

Fixed 1532 648 [1339, 1725] 

MADDPG 1457 422 [1301, 1613] 

FT Attn. MADDPG 1064 330 [944, 1184] 

Note: Exact confidence intervals depend on the sample size. 

2. Significance of Differences 

Looking at the confidence intervals: 

• Overlapping CIs between Fixed and 

MADDPG suggest that they are not 

statistically significant.  

• Comparing MADDPG and FT Attn. 

MADDPG, the CIs somewhat overlap, 

suggesting a potential but uncertain 

importance. 

• CIs for Fixed vs. FT Attn. MADDPG are 

close and show little overlap, suggesting 

possible importance. 
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Figure 12: Average Queue Length Across Different Algorithms at Medium Traffic Demand 

 

Summary Statement 

• FT Attn. MADDPG indicates more steady but 

poorer performance because it has the lowest 

mean and the lowest variance. 

• Results could be inconsistent due to the 

considerable variance in Fixed and 

MADDPG. 

• Although we are unable to definitively 

declare significance in the absence of rigorous 

hypothesis testing, confidence intervals 

indicate that FT Attn. MADDPG differs 

significantly from the others. 

The relationship between time and average queue 

length across the algorithms is illustrated in 

Figure 12. Results show that average queue length 

varied with time and was lowest for FT Attn. 

MAPDDPG compared to the other two 

algorithms. The results corroborate Li et al. 

(2021) that found that the trends of queue lengths 

are different across the algorithms because the 

controllers generated different control strategies. 

Results and Analysis with High Traffic 

Demand 

Table 6 presents the average waiting time under 

medium traffic demand for three algorithms. The 

study recorded an average of 5,204 vehicles per 

hour at a highway intersection, slightly less than 

the figure reported by Gonzales et al. (2009), but 

significantly higher than the 2,286 vehicles per 

hour observed at the North Western junction of 

Uhuru Highway–Kenyatta Avenue during the 

morning peak between 7 and 8 a.m. 

Table 6: Average Waiting Time with High Traffic Demand (seconds) 

Algorithm 

Implementation 

Number of 

vehicles 

All 

junctions 

gne0 gne1 gne2 gne3 gne4 

Fixed 5204 960 915 880 834 926 852 

MADDPG 5204 821 888 781 807 878 752 

FT Attn. MADDPG 5204 393 571 312 318 449 315 

1. Descriptive Statistics 

Let’s compute means and standard deviations: 

2. Statistical Significance 

To assess whether the differences are statistically 

significant, we would usually: 

Use an ANOVA for all groups at once or a t-test 

for pairwise comparisons assuming normality and 

comparable variances. 

Let’s estimate 95% confidence intervals (CI) for 

each method’s mean using: 
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Assuming normality and using ≈2.571 (df 

= 5):

Mean, Standard Deviation and 95% CI 

Method Mean SD CI 

Fixed 894.5 45.5 (846.8, 942.2) 

MADDPG 821.2 52.2 (766.4, 876.0) 

FT Attn. 

MADDPG 

393.0 103.5 (284.3, 501.7) 

Already we see FT Attn. MADDPG has a much 

lower mean, suggesting improved performance. 

3. Interpretation 

• The non-overlapping confidence intervals 

between FT Attn. MADDPG and the other 

two approaches clearly imply statistical 

significance in its superior performance.  

• Even though MADDPG beats Fixed as well, 

their CIs barely overlap, indicating that the 

difference may not be meaningful at the 95% 

level. 

Figure 13: Average Waiting Time with High Traffic Demand 

 

Summary Statement 

• When FT Attn. MADDPG is compared to 

both Fixed and MADDPG, the performance 

difference is statistically significant.  

• In the absence of additional testing (such as 

paired t-tests or larger sample sizes), the 

improvement from Fixed to MADDPG is 

probably but not necessarily significant. 

Figure 13 shows that average waiting times 

increase under high traffic demand. The Fixed-

time algorithm maintains a waiting time of around 

960 seconds, MADDPG slightly above 800 

seconds, while the proposed FT Attn. MAPDDPG 

model stabilizes just below 400 seconds. This 

indicates that FT Attn. MAPDDPG outperforms 

the others across all traffic levels. Additionally, it 

converges faster-after about 2060 episodes-

compared to MADDPG's 3163 episodes, 

confirming its superior performance and training 

efficiency.
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Table 7: Average Travel Times at High Traffic Demand 

Algorithm Average travel time (s) 
Queue length (number of 

vehicles waiting at all junctions) 

Fixed 1901 521 

MADDPG 1894 321 

FT Attn MAPDDPG 1587 204 

Confidence intervals (CIs), which show the range 

that the true mean is most likely to fall inside, 

allow us to compare these. With a 95% confidence 

level and a normal distribution assumption, we 

compute: 

 

Where: 

•  = sample mean 

• s= standard deviation 

• n = sample size (not given, so let's discuss 

two scenarios) 

Scenario 1: Equal and Sufficient Sample Size 

(e.g., n = 30) 

Let’s estimate 95% CIs for each method with 

n=30:

Method CI 

Fixed [1714.7,2087.3] 

MADDPG [1779.2,2008.8] 

FT Attn. MAPDDPG [1513.9,1660.1] 

Interpretation: 

• Confidence intervals for Fixed and 

MADDPG overlap, indicating that there 

is no statistically significant difference 

between their means.  

• FT Attn.  MADDPG in contrast to Fixed 

and MADDPG, MADDPG has a lower 

mean and a non-overlapping CI, 

indicating a statistically significant 

difference. 

Figure 14: Average Queue Length Across Different Algorithms at High Traffic Demand 

 

Summary Statement 

• We are unable to draw firm conclusions in the 

absence of a sample size. 

• Statistical techniques such as ANOVA or t-

tests would support this investigation. 

Figure 14 demonstrates the relationship between 

average queue length and time across the 

algorithms, aligning with findings by Li et al. 

(2021), who applied MADDPG. Figure 14 

indicates differing queue length trends due to the 
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distinct control strategies produced by each 

algorithm. 

Analysis Across Traffic Demands 

Results in Figure 15 illustrates that average 

waiting times of the studied algorithms increase 

with increase in traffic demand. This result 

corroborates findings of Jörneskog and Kandelan 

(2019), Li (2020) and Wu et al. (2020). The results 

further illustrate that FT Attn. MAPDDPG 

outperforms the other two algorithms both in 

training metrics and learning speed. 

 

Figure 15: Comparison of Fixed-time, MADDPG and FT Attn. MAPDDPG Algorithms 

Performance Across Traffic Demands 

 

Results in Figure 16 illustrate that average travel 

time increases with increase in traffic demand, 

and vice versa. The results further illustrate that 

FT Attn. MAPDDPG was best performing among 

the studied algorithms. This means that FT Attn. 

MAPDDPG can lower average travel time by 

16.21% at high traffic demand, 26.97% at medium 

traffic demand and 6.89% at low traffic demand 

compared to MADDPG. This indicates that FT 

Attn. MAPDDPG has an excellent prospect in 

dealing with the intersection control and is better 

than MADDPG and Cooperative MADDPG that 

was proposed in literature.  

 

Figure 16: Comparison of Average Travel Time Across Traffic Demands 

 

Results in Figure 17 illustrates variations of 

average queue lengths across traffic demand 

levels at four-way intersection. Results illustrate 

that as traffic demand increases, the average 

queue length also increases and vice versa. FT 

Attn. MAPDDPG is shown to have the lowest 

average queue length, therefore, out-performing 

the other two algorithms across traffic demand 

levels. 
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Figure 17: Average Queue Length Across Traffic Demands 

 

Analysis of Effects of Dedicated Lanes 

Results in Table 8 illustrates simulated effects of 

dedicated lanes for matatus and buses at high 

traffic demand times. Dedicated lanes result into 

increased number of vehicle hours travelled in the 

network.  

 

Table 8: Simulated Effects of Dedicated Lanes for Matatus and Buses at High Traffic Demand 

Peak 

hour 
Performance measure Mixed Dedicated 

Percentage 

Change 

Morning 
Network Total Vehicle hours travelled, VHT 8523 8875 4.13 

Matatu/bus dedicated route (min. for route) 15.3 15.8 3.27 

Evening 
Network Total VHT 9311 9426 1.24 

Matatu/bus dedicated route (min. for route) 15.7 16.8 7.00 

DISCUSSION 

The number of agents supported is the primary 

barrier to the practical implementation of our 

approach. Because of the state space's exponential 

expansion issue, our method has been limited to 

five agents. To learn effective and efficient 

communication for large-scale multi-agent 

cooperation, we will take advantage of the 

parameter-sharing mechanism. Additionally, we 

will design increasingly complex ecosystems in 

which each agent must communicate with a 

sizable number of other agents in order to require 

selective attention. The environment naturally 

mimics real-world situations where a number of 

agents are grouped into clusters, like a family, 

workplace, or school, and the agent must 

communicate with a limited number of agents 

from various groupings. 

In order to put our method into practice, a more 

practical representation is required in order to 

avoid just sharing the high-dimensional 

observations, which might include redundant 

data. In reality, the environment is typically 

constrained by bandwidth or has a high cost of 

communication. The agents must so learn how to 

arrange their schedules to fit the real-world 

situations. In subsequent research, we will expand 

the number of agents and refine our model to 

accommodate situations with constrained 

bandwidth. We think that in these complex 

situations, our method will perform satisfactorily 

while also offering certain advantages over 

existing methods. 
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CONCLUSIONS 

The paper proposes FT-Attn. MADDPG, a Fault-

tolerant multi-agent reinforcement learning 

(MARL) model that uses multi-head attention to 

filter useful information for critic estimation. The 

model outperforms baseline methods: -

MADDPG and FIXED-TIME-in noisy, 

cooperative, and competitive environments. 

Unlike prior approaches, FT-Attn. MADDPG 

doesn't require prior knowledge of noise levels 

and adapts across different traffic conditions 

without model tuning. It is particularly effective 

in handling complex scenarios where agents rely 

on accurate observations from multiple peers. The 

authors aim to further enhance its practicality in 

their future work. 
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