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ABSTRACT 

Forest plantations are crucial in the daily lives of humans, playing an important 

role in producing raw materials for the wood industry, generating personal 

incomes, contributing to economies, attracting tourists, conserving biodiversity, 

and regulating the climate. Failure to accurately and timely predict forest fires can 

have devastating effects due to the destruction of forests by fire, resulting in loss 

of businesses and incomes, destruction of biodiversity, loss of tourist attractions, 

and shortage of wood raw materials. Fire Weather Index (FWI) is commonly used 

to indicate fire danger as it gives useful information on the impact of wind and 

fuel moisture on the behaviour and spread of fire. This study utilizes FWI by 

developing a Bidirectional Gated Recurrent Unit (BiGRU) Deep Learning model, 

which uses the previous 5 days FWI values as input to predict the output (next day 

FWI) at SAO Hill Forest Plantation located in Iringa region, Tanzania, using three 

commonly used data scaling methods: Min-Max, Standard, and Robust scalers. 

The 13-year SAO Hill Forest Plantation daily FWI dataset was pre-processed 

using a scaling (normalization) approach and split into training, validation and test 

sets before being used for training and testing the developed BiGRU Deep 

Learning model. The trained BiGRU Deep Learning model was then saved into 

.h5 format and integrated with a Gradio-based Web App to provide a user interface 

for officials at SAO Hill Forest Plantation to predict daily FWI.  The evaluation 

findings reveal that the choice of data scaler has an impact on the daily FWI 

prediction performance of the developed BiGRU model, and Min-Max is the best 

performing and optimal data scaler with a Root Mean Squared Error (RMSE) 

score of 0.065 on test data, followed by Standard scaler with a test RMSE score 

of 0.157, followed by Robust scaler with a test RMSE score of 0.311. Major 

contributions of this study include a pre-processed 13-year FWI dataset for SAO 

Hill Forest Plantation ready for Artificial Intelligence (AI) research and 

development, a novel BiGRU model for predicting daily FWI at SAO Hill Forest 

Plantation, and a Web App integrated with the developed BiGRU model and Min-

Max data scaler to help officials at SAO Hill Forest Plantation predict daily fire 
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 danger and take precautionary measures to prevent forest fire ignition, respond to 

forest fire if it happens, and contain its spread. 
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INTRODUCTION 

Forest plantations are crucial to humans in many 

ways, ranging from being the main sources of raw 

materials for the wood industry, generating personal 

incomes and contributing to the economies along 

the way to being tourist attractions and conserving 

the biodiversity and the ecosystem (Tian et al., 

2017; Mgina et al., 2021, Zhang et al., 2022). In 

Tanzania, SAO Hill Forest Plantation (SAO Hill 

FP) is by far the biggest forest plantation 

(Kangalawe, 2021) and the biggest source of raw 

materials for the wood industry (Mgina et al., 2021) 

which are consumed by the wood industry inside 

and outside the country, playing along the way a 

crucial role of generating personal incomes to many 

Tanzanians and contributing to the economy. Forest 

fires can be catastrophic, negatively impacting the 

availability of wood raw materials, personal 

incomes of people, and the economy, and can 

destroy biodiversity, ecosystems, and even nearby 

properties (Mgina et al., 2021; Shin et al., 2019). 

SAO Hill FP has been experiencing several forest 

fires over many years. For instance, between 2000 

and 2011, SAO Hill FP experienced 143 fire 

incidents (Mgina et al., 2021). Failure to accurately 

predict forest fire danger in the SAO Hill FP and 

take precautionary measures can have devastating 

negative impacts. To address this issue, it is 

important to have in place effective Artificial 

Intelligence (AI) models that can accurately predict 

forest fire danger at SAO Hill FP and take 

precautionary measures to prevent forest fire from 

happening or to suppress and contain it in case it 

happens.  

Fire Weather Index (Bouramdane, 2024; 

Copernicus, 2025) is a numerical index used to 

indicate how likely the meteorological conditions 

(fuel moisture and wind) can trigger the forest fire 

intensity and spread. If the FWI value is high, there 

is a greater likelihood that the meteorological 

conditions will trigger a forest fire. This study 

utilizes FWI by developing a Bidirectional Gated 

Recurrent Unit (BiGRU) Deep Learning model, 

which uses SAO Hill FP FWI data to predict daily 

fire danger, information that will be useful to 

officials at SAO Hill FP in preventing, suppressing, 

and containing forest fires.  

Data scaling (normalization) is an important step 

when pre-processing data before feeding it into 
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Deep Learning models. The data scaling process 

usually involves using data scalers to scale down the 

data into smaller values, which helps the Deep 

Learning models to converge faster during training 

(Huang et al., 2023). Several studies have used 

different data scalers to scale down data for training 

and testing Deep Learning models. 

Liang et al. (2019) predicted forest fires in Canada 

by using a Min-Max scaler for normalizing input 

features and a Long Short-Term Memory (LSTM) 

Deep Learning model, achieving good results with 

90.9% accuracy.  Shahriar et al. (2025) predicted 

FWI in the Continental United States (CONUS) by 

using a Min-Max scaler for normalizing input 

features and Graph Neural Network-Long Short-

Term Memory (GNN-LSTM) Deep Learning 

model, achieving good results with Root Mean 

Squared Error (RMSE) score of 1.590. Chhetri et al. 

(2020) predicted monthly rainfall in Bhutan by 

using a Min-Max scaler for normalizing input 

features and a Bidirectional Long Short-Term 

Memory-Gated Recurrent Unit (BiLSTM-GRU) 

Deep Learning model, achieving good results with 

a low MSE (Mean Squared Error) score of 0.0075. 

Baljon et al. (2023) used a Min-Max scaler for 

normalizing input features and a Function Fitting 

Artificial Neural Network classifier to predict 

rainfall rate in Saudi Arabia, achieving good results 

with 96.1% accuracy. Liu et al. (2024) predicted 

short-term traffic by using a Standard scaler and 

Convolutional Neural Network-Bidirectional Gated 

Recurrent Neural Network with Additive Attention 

Mechanism (CNN-BiGRU-AAM) Deep Learning 

model, achieving good results with a coefficient of 

determination (R2) score of 0.97. Amiri et al. (2024) 

proposed a system for fault detection and 

photovoltaic diagnosis by using Standard Scaler and 

a combined CNN and BiGRU Deep Learning 

model, achieving good results in detecting and 

classifying various faults. Villegas-Ch et al. (2023) 

used a Standard scaler for the normalization of input 

features and an LSTM Deep Learning model for 

predicting drought in Ecuador, achieving good 

results with 98.5% accuracy. Yhdego et al. (2023) 

used a Robust scaler for input data normalization 

and a GRU Deep Learning model to forecast flight 

delays in America, achieving good results, with the 

results revealing most of the predicted delays were 

within 95% of the predefined confidence level. 

Pandit et al. (2022) used a Robust scaler for input 

data normalization and a GRU Deep Learning 

model to forecast long-term weather in Germany, 

achieving good results, with a Mean Absolute Error 

(MAE) score of 1.06 in forecasting wind speed. 

Tsokov et al. (2022) predicted air pollution in China 

by using a Robust scaler for data normalization and 

a hybrid spatiotemporal model based on CNN and 

LSTM, achieving good results, with an R2 score of 

0.908.  

Although existing studies reveal good performances 

of different data scalers, there is still a wide research 

gap as to which is the best-performing data scaler, 

especially in the context of forecasting fire danger 

at SAO Hill FP, which is located in Iringa, 

Tanzania, with a unique ecosystem and climatic 

conditions. The reviewed literature shows that 

different studies have used different data scalers in 

achieving their optimal results, suggesting the 

performance of the data scaler depends on the nature 

of the problem and the type of Deep Learning model 

used. Due to this fact, the choice of data scaler to 

use in the BiGRU Deep Learning model for 

forecasting fire danger at SAO Hill FP cannot be 

generalized but rather needs to be studied.  

To address this research gap, this study aims to first 

develop three instances of BiGRU Deep Learning 

model (with each instance implemented with one of 

the three commonly used data scalers (Min-Max, 

Standard and Robust)), second, to comparatively 

evaluate the impact of the three data scalers on the 

performance of the developed BiGRU Deep 

Learning model in forecasting daily FWI (fire 

danger) at SAO Hill FP and third, to develop a Web 

App integrated with best performing BiGRU 

instance to allow SAO Hill FP officials to predict 

daily FWI. Based on these objectives, this study 
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intends to answer one key research question: What 

is the impact of Min-Max, Standard, and Robust 

data scalers on the performance of the BiGRU Deep 

Learning model in forecasting daily FWI at SAO 

Hill FP? 

MATERIALS AND METHODS 

Research Design  

This study used experimental research design by 

developing the BiGRU Deep Learning model, 

training it using training and validation data and 

testing its performance to predict daily FWI at SAO 

Hill FP using test data (unseen data).  

Research Approach   

This study used a quantitative research approach by 

utilizing quantitative data (13-year daily FWI data 

at SAO Hill FP) to train and evaluate the 

performance of the developed BiGRU Deep 

Learning model in predicting daily FWI at SAO Hill 

FP.  

Data Collection and Analysis Methods 

This study utilized secondary data by downloading 

SAO Hill FP daily FWI data from the CEMS-Fire-

800m-Daily (Copernicus Emergency Management 

Service-Fire) dataset available in the Google Earth 

Engine (GEE) cloud platform. This study used a 

timeseries analysis of 13-year daily FWI data at 

SAO Hill FP to train and test the BiGRU Deep 

Learning model to predict daily FWI. Also, 

descriptive statistics was used to analyse the pattern 

of the 13-year daily FWI data at SAO Hill FP.  

Sampling Technique and Sample Size 

This study utilized purposive sampling, a non-

probability sampling approach to select a single 

study area, SAO Hill FP. The study area was chosen 

because of the reliable availability of its historical 

daily FWI data, its susceptibility to FWI variability 

as well as its significance in the production of raw 

materials for the wood industry in Tanzania and 

outside Tanzania. A large sample size of temporal 

data points (daily FWI data for a total of 13 years) 

ensured sufficient data is available for training the 

developed BiGRU model and testing its prediction 

performance. Also, choosing only a single study 

area enhanced focus of the developed BiGRU 

model and reduced variability which could be 

caused by choosing many locations as they would 

have different climates.  

Study Area 

The area under this study is SAO Hill FP (enclosed 

by a blue-coloured polygon in Figure 1), located in 

the Mufindi district, Iringa region, Tanzania.  

 

Figure 1: Study Area (SAO Hill Forest Plantation) 
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Data Collection   

Daily average FWI timeseries data for SAO Hill FP 

for a period of 13 years (from January 1, 2010, to 

December 31, 2022) was downloaded from the 

CEMS-Fire-800m-Daily (Copernicus Emergency 

Management Service-Fire) dataset (CEMS, 2025). 

The dataset is hosted by the Google Earth Engine 

(GEE) cloud platform (Tamiminia et al., 2020) and 

was downloaded in CSV format from the GEE with 

the help of a Climate Engine application 

(Huntington, 2017). The downloaded daily FWI 

data were limited to an area enclosed by the blue-

coloured polygon in Figure 1.  

Data Pre-processing 

Before feeding data into the Deep Learning models, 

the data needs to be pre-processed to be in a 

numerical format which is suitable for training and 

testing the Deep Learning models. This section 

describes the steps which were involved in pre-

processing the data.   

• Data Analysis: The 13-year daily FWI dataset 

for SAO Hill FP was visualized (refer to 

Figure 2) and afterwards analysed by using 

descriptive statistics, yielding the following 

results: count of 4748 records indicating a total 

number of daily FWI observations, a mean of 

16.2742 indicating an average FWI value, a 

standard deviation of 16.0319 FWI value, a 

minimum FWI value of 0.0000, and a 

maximum FWI value of 70.5494.   

 

Figure 2: Daily FWI Values for SAO Hill FP for 13 years 

 

• Data Scaling: Three data scalers were used to 

normalize the 13-year daily FWI data for SAO 

Hill FP alternatively:  

o Min-Max Scaler: The FWI data was 

normalized (scaled down) to fit in the 

range of between 0 and 1 by using the 

Min-Max scaler (refer to equation (i)), 

where 𝑋, 𝑋𝑀𝑎𝑥, 𝑋𝑀𝑖𝑛 and 𝑋𝑆 represent 

actual, maximum, minimum, and 

scaled FWI values, respectively.  

𝑋𝑆

=
𝑋 − 𝑋𝑀𝑖𝑛

𝑋𝑀𝑎𝑥 − 𝑋𝑀𝑖𝑛
                                                            (𝑖)      
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o Standard Scaler: The FWI data was 

normalized by using the Standard 

Scaler (refer to equation (ii)), where 𝑋, 

𝜇, 𝜎 and 𝑋𝑆 represent actual, mean, 

standard deviation, and scaled FWI 

values, respectively. 

𝑋𝑆 =
𝑋 − 𝜇

𝜎
                                                                (𝑖𝑖) 

o Robust Scaler: The FWI data was 

normalized by using the Robust Scaler 

(refer to equation (iii)), where 𝑋, 

𝑋𝑀𝑒𝑑𝑖𝑎𝑛, 𝑋75𝑡ℎ, 𝑋25𝑡ℎ and 𝑋𝑆 

represent actual, median, 75th 

percentile, 25th percentile, and scaled 

FWI values, respectively.  

𝑋𝑆

=
𝑋 − 𝑋𝑀𝑒𝑑𝑖𝑎𝑛

𝑋75𝑡ℎ − 𝑋25𝑡ℎ
                                                  (𝑖𝑖𝑖) 

• Dataset Split: When developing a Deep 

Learning model, it is important to split the 

dataset into three sets (training, validation, and 

test sets). Training and validation sets are 

usually used during training of the model, with 

the role of a validation set being to evaluate the 

model’s performance during training and tune 

(change) hyperparameters to attain best best-

performing model. The role of a test set is to 

evaluate the prediction performance of the 

model on unseen data (never seen before) and 

measure its generalization capability. After 

scaling the 13-years FWI data for SAO Hill 

FP, the scaled FWI data was then split by using 

the following approach: training set (the first 

60% of the data), validation set (the next 20% 

of the data) and test set (the last 20% of the 

data). There were three rounds of the data 

splitting process, each round corresponding to 

a particular data scaler.  

• Input Features and Labels: The BiGRU model 

needs to learn how to predict the output (next 

day’s FWI) by looking at the pattern of input 

(previous days' FWIs). A time-lag of 5 days 

was used, meaning a single pair of model 

input-output consisted of the previous 5 days' 

FWI values as input and the next day's FWI 

value as an output. The creation of input-

output features was repeated for each record 

present in the training, validation, and test sets.  

Architecture of the GRU Unit 

GRU (refer to Figure 3) is a type of Recurrent 

Neural Network (RNN), and is usually used to 

process sequential data. The classical RNN model 

fails to remember useful information from past 

timesteps, which could become useful in future 

timesteps, a problem known as vanishing gradients. 

GRU addresses this problem by including in its 

architecture several gates to retain useful 

information from previous timesteps.  
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Figure 3: GRU Architecture  

 

At each timestep 𝑡 The GRU unit receives the 

current input vector 𝑥𝑡 and the previous hidden state 

ℎ𝑡−1 and provides an output which is a new hidden 

state ℎ𝑡 as follows. 

• Reset Gate: The reset gate 𝑟𝑡 is for deciding the 

extent of information to be forgotten from the 

previous hidden state before the new candidate 

hidden state is computed, as shown in equation 

(vi), where 𝜎 is the Sigmoid activation function 

(refer to equation (iv)),  𝑊𝑟 is the weight matrix 

of the input, 𝑈𝑟 is the weight matrix of the 

previous hidden state and 𝑏𝑟 is the bias term. 

Because the Sigmoid activation function 

produces values ranging between 0 and 1, when 

𝑟𝑡 is close to 0, most of the previously hidden 

state information is forgotten, and when 𝑟𝑡 It is 

close to 1, and most of the previously hidden 

state information is retained.  

• Update Gate: The update gate 𝑧𝑡 is for 

controlling the extent of information to be 

carried over to the next timestep from the 

previous hidden state, as shown in equation 

(vii), where 𝑊𝑧 is the weight matrix of the input, 

𝑈𝑧 is the weight matrix of the previous hidden 

state and 𝑏𝑧 is the bias term. When 𝑧𝑡 is close to 

0, most of the previous hidden state information 

is discarded, and when 𝑧𝑡 It is close to 1, and 

most of the previously hidden state information 

is retained.  

• Candidate Hidden State: The candidate hidden 

state ℎ̃𝑡 controls the extent of the new 

information to be injected into the current 

hidden state, by combining the current input and 

past information from the reset gate, as shown 

in equation (viii), where 𝑡𝑎𝑛ℎ (refer to equation 

(v) Is the activation function with 𝑒 being the 

Euler’s number, 𝑊ℎ is the weight matrix of the 

input, 𝑈ℎ is the weight matrix of the previous 

hidden state, 𝑏ℎ is the bias term and ⨀ It is the 

element-wise multiplication. The past hidden 

state is retained if 𝑟𝑡 is close to 1, enabling the 

candidate's hidden state to remember past 

information; otherwise, the previous hidden 

state is ignored if 𝑟𝑡 is close to 0, forcing the 

candidate's hidden state to depend only on the 

new input.  

• Final Hidden State: Computation of the final 

hidden state ℎ𝑡 is done by using the update gate, 

which makes decisions if the previous hidden 

state is kept or not kept (replaced by candidate 

hidden state) as shown in equation (ix). The 

hidden state remains the same if 𝑧𝑡 is close to 1, 
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while the hidden state is replaced by the 

candidate hidden state if 𝑧𝑡 is close to 0.

 

𝜎(𝑥) =
1

1+𝑒−𝑥                                                                (𝑖𝑣)    

𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥                                                        (𝑣)                             

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟)                                    (𝑣𝑖)                                

𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧)                                   (𝑣𝑖𝑖)                                 

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡⨀ℎ𝑡−1) + 𝑏ℎ)                (𝑣𝑖𝑖𝑖)                

ℎ𝑡 = (1 − 𝑧𝑡)⨀ℎ̃𝑡 + 𝑧𝑡⨀ℎ𝑡−1                                  (𝑖𝑥)                                 

 

The architecture of BiGRU Unit 

The architecture of the BiGRU unit shown in Figure 

4 is based on the GRU unit. However, unlike the 

GRU unit, which usually processes sequential 

information in only one direction (forward 

direction), the BiGRU unit processes information in 

two directions (forward and backward directions). 

The BiGRU unit contains two GRU units: the 

Forward GRU unit, which processes information 

from the first timestep to the last timestep, and the 

Backward GRU unit, which processes information 

from the last timestep to the first timestep. The 

output of the Forward GRU unit and the output of 

the Backward GRU unit are then aggregated to 

produce a single output of the BiGRU unit.   

Figure 4: BiGRU Architecture 

 

Proposed BiGRU Model 

The architecture of the proposed BiGRU model is 

shown in Figure 5 and consists of two BiGRU 

layers and one Dense layer. The role of the GRU 

layer is to learn patterns of input (previous days’ 

FWI values) and how to map the input with the 

output (next day’s FWI value). The role of a Dense 

layer is to produce a single output value as the 

predicted next day FWI.   
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Figure 4: Proposed BiGRU Model 

 

 

Loss Function and Performance Evaluation 

Metrics 

The loss Function plays a crucial role when training 

Deep Learning models because it computes the 

error between the true (actual) value 𝑦 and the 

predicted value 𝑦̂. Loss computation helps the 

BiGRU model to update its weights correctly to 

reduce FWI prediction error. By updating the model 

weights (parameters) correctly, the BiGRU model 

learns how to predict FWI values that are as close as 

possible to the actual FWI values and hence reduce 

the loss. In this study, Mean Squared Error (MSE) 

(refer to equation (x)) was used as a Loss Function.  

On the other hand, the prediction performance of the 

developed BiGRU model on test data (unseen data) 

needs to be evaluated to measure its capability to 

generalize to new information that it has never seen 

before. This is done by measuring the error between 

the true (actual) value 𝑦 and the predicted value 𝑦̂. 

This study utilized the Root Mean Squared Error 

(RMSE) metric shown in equation (xi) to evaluate 

the performance of the developed BiGRU model.  

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

                             (𝑥) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

                       (𝑥𝑖) 

WEB APP 

This study developed a Web App shown in Figure 

5 using the Gradio framework (Ferreira et al., 

2024). SAO Hill FP official can access the Web App 

via a Web browser, use a CSS-styled Web page to 

enter the 5 previous days' FWI values, and click the 

‘Predict’ button to predict the next day FWI. The 

Web App then takes the entered parameters 

(previous 5 days FWI values) and sends them to the 

imported and pretrained (already trained) BiGRU 

model in (.h5) format, which in turn takes the 

parameters as input, predicts the next day FWI, and 

returns the predicted next day FWI back to the Web 

App, which displays it back to the SAO Hill FP 

official.   
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Figure 5: Web App for Predicting Daily FWI at SAO Hill FP 

 

RESULTS 

Computation Environment 

All of the training and testing experiments for the 

BiGRU model (developed in IPython notebook) 

were conducted on the Google Colab (Bisong, 

2019) cloud platform using several software 

libraries including TensorFlow, Keras, Scikit-learn, 

Numpy, Pandas, and Matplotlib, and hardware run-

time environment resource allocation of hard disk 

space of 107.7 GB and RAM of 12.7 GB.   

Hyperparameters Tuning Experiments 

Finetuning hyperparameters of the developed 

BiGRU model is a critical step during the training 

process, as hyperparameters have a direct impact on 

the performance of the Deep Learning model. After 

several hyperparameter tuning experiments for the 

BiGRU model, the following hyperparameters were 

chosen: 2 BiGRU layers, 1 Dense layer, output-

dimensionality of 100 for the first BiGRU layer, 

output-dimensionality of 200 for the second GRU 

layer, batch-size of 16, learning rate of 0.001, Adam 

as an optimizer, and 100 training epochs.  

BiGRU Model Training Experiments 

A total of three training experiments were 

conducted for the developed BiGRU model, with 

each training experiment using identical 

hyperparameters, the same BiGRU model, but a 

different data scaler. Three data scalers (Min-Max, 

Standard, and Robust) were used in training 

experiments 1, 2 and 3, respectively. In each 

experiment, the input was the 5 previous days' FWI 

values, and the output was the next day’s FWI 

value. After each training experiment, an instance 

of the trained BiGRU model (which corresponds to 

a particular data scaler) was saved in (.h5) format to 
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enable future inference in the Web App by SAO Hill 

FP officials. Figure 7 shows the training loss (MSE) 

of the BiGRU model when implemented with three 

different data scalers (Min-Max, Standard, and 

Robust). Since low training MSE scores indicate 

effective training and good training performance of 

the BiGRU model, these training results imply that 

the BiGRU model achieved best training 

performance when implemented with Min-Max 

data scaler, followed by Standard data scaler, and 

last, by Robust data scaler.  

 

Figure 6: Training Loss of BiGRU Model Implemented with Three Different Data Scalers 

 

BiGRU Model Performance Evaluation Results 

After training experiments, each instance of the 

trained BiGRU model (the 3 instances correspond 

to 3 different data scalers used in the BiGRU model) 

was used to evaluate BiGRU’s model performance 

on the test set (unseen data). Figure 7 shows the plot 

of true (actual) FWI values against predicted FWI 

values by different instances of the BiGRU model. 

On the other hand, Table 1 shows the prediction 

RMSE scores of the three instances of the BiGRU 

model on the test set. These results reveal that Min-

Max is the best-performing data scaler in the 

BiGRU model for predicting daily FWI at SAO Hill 

FP, achieving a Test RMSE score of 0.065, 

followed by Standard scaler, which achieved a Test 

RMSE score of 0.157, followed by Robust scaler 

which achieved a Test RMSE score of 0.311.  
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Figure 7: True (Actual) vs Predicted Daily FWIs by BiGRU Model Implemented with Different Data 

Scalers at SAO Hill FP 

 

Table 1: Test RMSE Scores of BiGRU Model Implemented with Different Data Scalers at SAO Hill 

FP 

Data Scaler Test RMSE Score 

Min-Max 0.065 

Standard 0.157 

Robust 0.311 

DISCUSSION 

Performance Differences of Data Scalers 

The findings reveal that the Min-Max scaler 

achieved the best performance (lowest prediction 

RMSE score) on the test set, which demonstrates its 

superior performance in learning and preserving 

FWI data patterns in the BiGRU model. The next 

best-performing data scaler was the Standard scaler 

with a moderately higher prediction RMSE score on 

the test set, while the worst-performing data scaler 

was the Robust scaler with the highest prediction 

RMSE score on the test set. The difference in 

performance of the three data scalers may be 

attributed to their different characteristics. For 

instance, a Min-Max scaler scales the data to a fixed 

range, usually between 0 and 1, which helps Deep 

Learning models to converge faster and more 

accurately, especially in cases where the magnitude 

of data values differs but there are no extreme 

outliers. On the other hand, Standard Scaler scales 

the data to have a mean of 0 and a standard deviation 
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of 1 and performs well in most use cases, although 

its performance might degrade when data is skewed 

or consists of outliers. Lastly, the Robust scaler is 

intentionally designed to handle outliers by using 

the median and interquartile range, hence, it might 

underperform when most of the data is clean and 

nicely distributed, as is the case in the SAO Hill FP 

FWI dataset.  

Comparison with Findings from Literature 

These findings suggest that the choice of data scaler 

has an impact on the performance of BiGRU models 

in forecasting (prediction) tasks of time series 

variables, and Min-Max is the best performing and 

optimal data scaler to use in BiGRU models when 

predicting daily FWI at SAO Hill FP, followed by 

Standard scaler, followed by Robust scaler. These 

findings align with the findings from the literature, 

which also suggest that a data scaler has an impact 

on the prediction performance of the Deep Learning 

model, but the best-performing data scaler depends 

on the type of Deep Learning model being used and 

the nature of the problem being addressed. This is 

evident in a study by Switrayana et al. (2025), 

which used a GRU model to predict stock prices 

with results revealing that the Min-Max scaler had 

22.57% better RMSE performance than the 

Standard data scaler. Also, in a study by Christofi et 

al. (2024), which used an LSTM model to predict 

Arctic Sea ice melting, the results revealed that the 

Standard scaler was the best-performing data scaler 

with an RMSE score of 0.484, followed by the 

Robust scaler with an RMSE score of 0.574, 

followed by Min-Max scaler with an RMSE score 

of 0.758.  

Major Contributions  

The following are the major contributions of this 

study:  

• Novel BiGRU Model: A Novel BiGRU model 

has been developed, which uses the optimal 

Min-Max data scaler to predict daily FWI at 

SAO Hill FP. The BiGRU model was trained 

and saved in (.h5) format to facilitate future 

inference by the Web App.  

• Web App: A Gradio-based Web App has been 

developed to help officials at SAO Hill FP 

predict daily FWI and take appropriate 

measures in case the prediction shows high risk 

and danger of forest fires.   

• Preprocessed Dataset: The 13-year SAO Hill FP 

daily FWI dataset has been preprocessed using 

several methods, including data scaling, 

creation of input and output features, and data 

splitting into training, validation, and test sets. 

The pre-processed dataset was then saved in 

(.pkl) format, ready to be imported and used by 

Deep Learning models. The preprocessed 

dataset will later be shared on the GitHub cloud 

platform to be freely accessed by the general 

public interested in AI research and 

development.    

• Research Gap Filling: This study’s findings 

help to fill the existing research gap on the 

impact of data scalers on the prediction 

performance of BiGRU Deep Learning models, 

especially in the context of predicting daily FWI 

at SAO Hill FP and environments resembling 

that of SAO Hill FP.  

Practical Applications 

The developed BiGRU model integrated with the 

Web App can be very useful in preventing forest fire 

ignition, responding to forest fire if it does happen, 

and mitigating its spread by helping the officials at 

SAO Hill FP take precautionary measures. After 

predicting FWI, which is deemed dangerous in the 

Web App, officials at SAO Hill FP can take the 

following precautionary measures: 

• Forest Fire Prevention Measures: Officials can 

restrict all fire-related activities such as open 

burning, smoking, usage of sparks-generating 

chainsaws, patrol high-risk areas, and close 

access roads to prevent possible forest fires.  
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• Forest Fire Preparedness Measures: Officials 

can correctly position firefighting equipment 

such as fire trucks, water tankers, and portable 

pumps in high-risk areas, ensure water 

availability, remove dry grass and flammable 

debris around the forest, and create fire breaks.  

• Forest Fire Emergence Response Readiness: 

Officials can alert emergency firefighters and 

conduct firefighting drills.   

Study Limitations 

Although this study reveals effective results in 

predicting forest fire danger at SAO Hill FP, it is 

worth mentioning the following limitations of this 

study: 

• Limited Geographic Area: This study is based 

on SAO Hill FP and uses a single specific 

dataset of SAO Hill FP FWI to train the BiGRU 

model to predict forest fire. This limits its 

ability to capture variable environmental and 

climatic conditions across broader geographic 

locations.  

• Operational Constraints Consideration: This 

study did not account for practical challenges 

and requirements of implementing the fire 

danger prediction system at SAO Hill FP, such 

as training of local staff, or integration with 

existing fire management workflows and 

protocols. This might impact the actual 

deployment of the developed Web App. 

CONCLUSION 

This study has developed the BiGRU Deep 

Learning model for predicting daily fire danger 

(FWI) at SAO Hill FP and evaluated its prediction 

performance when implemented with three different 

data scalers, with the results revealing Min-Max is 

the best-performing data scaler, achieving the 

lowest test RMSE score, followed by Standard 

scaler and Robust scaler respectively. This suggests 

the choice of data scaler has a direct impact on the 

performance of the BiGRU Deep Learning model in 

predicting FWI values. Also, the Min-Max is the 

optimal data scaler to use in the BiGRU model when 

predicting daily FWIs at SAO Hill FP and similar 

environments.   

Recommendations  

This study recommends the Min-Max data scaler as 

the optimal and practical data scaler to use in 

BiGRU-based Deep Learning models for predicting 

daily FWI at SAO Hill FP and environments with 

similar climatic conditions.    
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