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ABSTRACT 

The escalating global freshwater shortage is driven by socio-economic 

development, changing consumption patterns, and systemic inefficiencies, 

with semi-arid regions like Dodoma, Tanzania, being especially vulnerable. 

Traditional statistical and regression-based models for predicting water 

deficits have proven insufficient in capturing the complex, nonlinear 

interactions among climatic, hydrological, and anthropogenic factors. To 

address this gap, this study proposes a deep learning-based predictive 

framework utilising advanced algorithms, Long Short-Term Memory 

(LSTM), Convolutional Neural Networks (CNN), Recurrent Neural 

Networks (RNN), and Deep Neural Networks (DNN) to improve the 

forecasting of water deficits. Using a thirteen-year (13) dataset collected 

from the semi-arid climate region of Dodoma, encompassing 

meteorological, hydrological, and socioeconomic variables. The models 

were trained and evaluated using performance metrics such as Root Mean 

Square Error (RMSE) and R-squared (R²). The DNN model demonstrated 

superior performance with an RMSE of 0.049 and an R² of 1.000, 

significantly outperforming other models. LSTM, CNN, and RNN models 

showed moderate to weak predictive accuracy, particularly in handling 

long-term dependencies and extreme deficit events. The key finding of this 

study is that the DNN model provides highly reliable and accurate water 

deficit predictions, making it the most effective among the tested deep 

learning approaches. This result highlights the value of incorporating deep 

learning into water resource planning, especially in data-scarce, semi-arid 

regions. The study concludes that DNN-based models should be prioritised 

for operational deployment in early warning systems and decision-making 

platforms. Future work should explore hybrid architectures, hyperparameter 

tuning, and integration with real-time data sources to enhance robustness 

and applicability. 
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INTRODUCTION 

Water is an essential resource for human 

development, agriculture, ecosystems, and drought 

management [1]. However, recurring water deficits 

in the region have led to significant challenges in 

agriculture, water supply, and sustainable 

development [2]. The water deficit is the gap 

between demand and supply, influenced by climate 

variability, agricultural practices, and population 

growth. In most parts of the world, accurate and 

real-time daily or monthly prediction of surface 

water deficits remains a difficult challenge due to 

the non-linearity and non-stationarity of the 

associated real hydrological data [3]. Hence, this 

research topic gives more attention to the water 

engineers and decision makers. 

Water Deficit prediction has become a major topic 

in hydrologic time series over the last few decades. 

The paucity of information about physical concepts 

while studying the relationships between variables 

has necessitated the use of data-driven models in 

hydrological Prediction as an alternative to 

knowledge-driven methods.  

Traditional hydrological forecasting tools often fail 

to capture the complex, nonlinear relationships 

between climate variables such as precipitation, 

temperature, soil moisture, and vegetation 

dynamics. These methods typically rely on physical 

models or statistical extrapolation, which struggle to 

generalise well in data-scarce and heterogeneous 

environments like those found in sub-Saharan 

Africa. 

Deep Learning (DL) models, known for their ability 

to capture complex patterns in data, offer a 

promising approach to predicting water deficits 

compared to traditional statistical methods. This 

study seeks to employ and compare different DL 

models for the prediction of potential water deficit 

in Dodoma with the aid of recognition of the 

appropriate features to construct the learning 

process of the DL model. 

Dodoma, a semi-arid climate, coupled with 

increasing water demands, faces a significant risk of 

recurrent water shortages. Traditional methods for 

predicting water deficits, such as statistical and 

regression-based approaches, often fail to capture 

the complex interactions between climatic, 

hydrological, and anthropogenic factors. 

The new data-driven approaches, such as “DL 

algorithms," have shown capacity in capturing 

complex non-linear data patterns that would have 

required extrapolation [4]; hence, they are 

considered an alternative method to the existing 
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prediction methods in several fields of hydrology, 

such as river flow forecasting [5]. 

While DL techniques have shown great promise in 

other domains, their application in water deficit 

prediction remains underexplored in Tanzania. This 

study addresses the need for improved predictive 

models by deploying appropriate 

features/parameters (climate variables) selection by 

analysing Complex Interactions and incorporating 

relationships between climatic, hydrological, and 

anthropogenic factors influencing water deficits that 

contribute significantly to surface water loss in the 

region, thereby providing a framework for proactive 

water management in Dodoma, Tanzania. 

By utilising advanced DL techniques such as 

LSTM, RNN, CNN, and DNN, the study intends to 

enhance the accuracy and reliability of water deficit 

predictions. The research identifies and selects key 

features that have the greatest impact on water 

deficit prediction. 

BACKGROUND INFORMATION AND 

RELATED WORKS 

Researchers have emphasised the importance of 

accurate and timely short-term water demand 

forecasting for effective urban water supply 

management. Previous studies highlighted that 

many DL-based forecasting models relied on 

manual feature extraction strategies, resulting in 

incomplete data utilisation and limited adaptability. 

To address these challenges, a novel framework was 

developed, incorporating the S-H-ESD method for 

data pre-processing and the Conv1D-GRU (one-

dimensional convolution-gated recurrent unit) 

model for forecasting [7]. Historical monitoring 

data were analysed using various hyperparameter 

configurations and training strategies. The findings 

revealed that S-H-ESD effectively handled 

anomalies, significantly enhancing forecasting 

accuracy. For example, with a 7-day training 

dataset, the S-H-ESD method improved average 

model accuracy by 1.23% compared to the Z-Score 

method. Additionally, the Conv1D-GRU model 

demonstrated superior accuracy and adaptability in 

feature extraction compared to models such as 

GRUN and ANN. Under optimal parameter settings 

and training strategies, the framework achieved 

exceptional performance, with the best MAPE and 

NSE values recorded at 1.677% and 0.983, 

respectively. This research underscores the 

potential of combining advanced pre-processing 

techniques with adaptable forecasting models to 

enhance short-term water demand prediction. 

Focused on forecasting models using artificial 

intelligence, comparing nine ML and DL 

approaches with water consumption data from both 

univariate (water consumption only) and 

multivariate (including climatic and calendar 

inputs) time series models were evaluated. Results 

show that DL models, particularly LSTM, achieved 

superior accuracy, with mean absolute errors of 0.11 

m³/hr (univariate) and 2.96 m³/hr (multivariate). 

These findings highlight LSTM's potential for 

sustainable water resource management. 

[10] In their research, they examined recent 

advancements in applying ML to water quality 

prediction, highlighting the challenges in 

identifying a universally best-performing model due 

to variability across parameters and regions. The 

review involved an extensive survey and 

comparison of existing literature to assess the 

effectiveness of different ML models. It emphasised 

the need for further exploration of water quality 

parameter characteristics to develop more broadly 

applicable methodologies. The review also points 

out the limitations of ML models that do not account 

for physical and chemical processes, particularly in 

predicting coastal water quality. To improve 

prediction accuracy, it suggests diversifying data 

sources, increasing data volume, and addressing 

missing data through interpolation methods. The 

integration of ML with numerical simulations is 

proposed as a promising approach for enhancing 

predictive models and supporting coastal ecosystem 

conservation efforts. [11] Their study research on 

urban water demand forecasting using artificial 
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intelligence aimed to present the current state of the 

art and offer guidance on methods and models for 

researchers and sanitation professionals. It covered 

models developed with standard statistical 

techniques, such as linear regression and time-series 

analysis, as well as Soft Computing methods. The 

review highlighted that most studies focused on the 

management of operating systems, leaving room for 

long-term forecasting. It emphasised that no single 

global model outperforms all others in every case, 

requiring regional studies to evaluate the strengths 

of each model or combination of methods. While 

the use of ML and Artificial Intelligence in water 

demand forecasting has increased, there remains 

significant potential for improvement. 

[12] Their study aimed to predict water demand in 

the Beijing–Tianjin–Hebei region of China, using 

data from 2004 to 2019. Eleven statistical and ML 

models were developed, incorporating explanatory 

variables related to the economy, community, water 

use, and resource availability. The models were 

evaluated using interpolation and extrapolation 

scenarios, with the GBDT model showing the best 

performance, achieving high accuracy and low error 

rates. The GBDT model was further validated in 

three other regions of China, demonstrating 

robustness with prediction accuracies above 80%. 

The study found that ML models, particularly 

ensemble models, outperformed statistical models. 

The results highlight the effectiveness of the 

identified variables in predicting water demand and 

suggest that the best-performing model can be 

applied to other regions to optimise water resource 

management. Future work will focus on subdividing 

water demand, analysing the impact of water reuse, 

and incorporating the effects of COVID-19 on water 

demand predictions. 

According to the study [13], the authors developed 

an AI-based model to predict and classify water 

demand at the Gurye intake station, a crucial site for 

managing water resources, especially in drought-

prone areas. The model utilised advanced ML 

techniques, including DNN and LSTM networks, to 

forecast water demand based on historical data and 

environmental variables. The model was trained 

with data from 2004 to 2015 and validated using 

data from 2016 to 2021. The LSTM model 

demonstrated high accuracy, achieving a CC of 0.95 

and a normalised root mean square error (NRMSE) 

of 8.38, indicating its effectiveness in capturing 

temporal patterns in water demand. Additionally, 

the study incorporated probability density functions 

PDF and CDF to assess the probability of water 

demand falling within specific ranges, which was 

essential for developing a crisis alert system. This 

system provides early warnings for potential water 

shortages, enabling proactive water management. 

The study also explored other AI-based 

classification models, such as DT and Random 

Forest RF, which considered factors like the 

previous day’s water demand, rainfall, and 

temperature. The Random Forest model achieved an 

F1-score of 0.88, further confirming its strong 

predictive performance. Overall, the findings of this 

study underscore the potential of AI-based models 

in improving water resource management. By 

accurately predicting water demand, these models 

can contribute to better drought management and 

water conservation strategies, particularly in 

regions vulnerable to water scarcity. 

According to [14], urban water management is a 

critical issue for city planners, and accurate water 

demand forecasting is essential for mitigating water 

shortage crises. The study applies a Markov chain 

model combined with ANNs to estimate short-term 

urban water demand in Tehran, considering factors 

such as maximum temperature, water consumption, 

and precipitation rate from the previous four days to 

predict water consumption on the fifth day. Daily 

data from March 21, 2018, to March 19, 2021, were 

collected and analysed. The results showed that the 

Markov chain model outperformed the ANN model 

in forecasting accuracy. Specifically, the Markov 

chain model demonstrated a 48% improvement in 

accuracy for the test data and a 65% improvement 

for the training data compared to the ANN model. 
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These findings suggest that the Markov chain model 

is a highly effective tool for estimating short-term 

urban water demand. 

DL methods have demonstrated significant 

advancements in forecasting hydrological extremes 

[15], [16]. These methods leverage advanced 

learning algorithms and model architectures, such 

as CNNs for automatic feature extraction and 

LSTM networks for enhanced memory capabilities, 

enabling the modelling of complex relationships 

within large datasets [17]. 

For instance, [16] utilised an LSTM model to 

forecast drought indices and found it to outperform 

conventional ML models. Similarly, deep belief 

networks have shown higher accuracy in stream 

flow prediction compared to simple neural 

networks, although their performance was inferior 

to support vector machines. [15], combined wavelet 

analysis with an ARIMA-based LSTM model, 

achieving improved drought forecasting results. In 

another study, [18] demonstrated that RNN-LSTM 

models provided better predictions for low-flow 

hydrological time series compared to standalone 

RNN models. 

Moreover, [19] successfully integrated multi-source 

remote sensing data with LSTM, support vector 

regression, and principal component analysis PCA 

to classify extreme drought events with high 

accuracy. DL models have also been compared to 

climate models, which, while effective for primary 

phenomena like temperature and rainfall, are less 

sensitive to secondary and tertiary phenomena such 

as droughts and floods [20]. Leveraging this insight, 

[20] developed a drought assessment model using 

DL algorithms and multiple hydro-meteorological 

precursors, including wind speed, air temperature, 

rainfall, and geo-potential height. This model 

demonstrated superior performance in drought 

monitoring compared to standalone climate models. 

[21] Employed a localised sequential LSTM model 

to assess flood susceptibility, integrating a feature 

engineering approach. This method enhanced the 

model's capability to process flood-related 

conditioning factors and effectively handle 

sequential data while accounting for diverse spatial 

relationships. Similarly, [15] proposed a 

spatiotemporal flood forecasting framework that 

combined LSTM with a reduced-order modelling 

technique. By leveraging dimensionality reduction 

methods, such as singular value decomposition, the 

framework retained critical orthogonal features 

while significantly improving computational 

efficiency without compromising accuracy, making 

it suitable for real-time flood predictions. 

In another study, [22] demonstrated that DL models 

outperformed traditional statistical approaches like 

ARIMA and physical hydrological models for 

predicting flood peaks. While physical models excel 

at interpreting relationships through equations 

derived from the dataset, DL models proved more 

adept at capturing complex, non-linear patterns 

within the data. Building on these advancements, 

this study explores spatiotemporal forecasting by 

integrating linear and non-linear techniques, 

capitalising on DL's strength in uncovering intricate 

data relationships. 

METHODOLOGY 

Study Area  

Dodoma, the capital of Tanzania, is situated in a 

semi-arid region receiving less than 600mm of 

annual rainfall. The area is predominantly 

agricultural, relying heavily on seasonal rainfall. Its 

climatic profile makes it an ideal case for 

investigating water stress and forecasting models. 

The landscape is characterised by sparse vegetation, 

variable topography, and limited irrigation 

infrastructure. Seasonal variation in rainfall causes 

unpredictable soil moisture availability, increasing 

vulnerability for the inhabitants. 

Sample Size 

The sample used in this study comprises thirteen 

years (2010–2023) of monthly data collected from 

various institutional sources relevant to the Dodoma 
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region of Tanzania. This timeframe was selected to 

ensure a sufficiently large and diverse dataset, 

capturing seasonal cycles, climate variability, and 

socio-economic trends across dry and wet years. 

The extended historical range enhances the model's 

ability to learn long-term patterns and generalise 

effectively to future scenarios. In total, the dataset 

included over 150-time steps, which is well above 

the minimum threshold required for training deep 

learning models such as LSTM, RNN, CNN, and 

DNN, which benefit from long temporal sequences 

to capture complex interactions. 

Data Collection  

The expected data sources for water deficit 

forecasting in Dodoma, Tanzania, encompass 

several key entities to ensure a comprehensive 

understanding of the factors influencing water 

availability. Hydrological data obtained from the 

Dodoma Water and Sanitation Authority 

(DUWASA) provides valuable insights into 

historical water consumption and supply trends. 

This data is critical for analysing the region’s water 

resource dynamics and identifying patterns of 

deficit or surplus. 

Meteorological data sourced from the Tanzania 

Meteorological Authority (TMA), including 

essential climate variables such as rainfall, 

temperature, and humidity. These variables play a 

significant role in understanding seasonal and inter-

annual climate variability, which directly impacts 

water availability in the region. Data was compiled 

for the period 2010–2023 from multiple sources: 

• Meteorological data: Rainfall, temperature, 

wind speed, surface pressure 

• Hydrological data: Soil moisture, PET, 

evapotranspiration rates 

The dataset consisted of 5,110 daily observations 

collected from Dodoma, Tanzania. 

Ethical Considerations: Data Permissions and 

Confidentiality 

Ethical compliance was ensured throughout the 

study. The data used was obtained from public and 

institutional sources, including meteorological, 

hydrological, and demographic datasets that were 

either openly accessible or provided through 

institutional collaboration. No personally 

identifiable or sensitive information was included, 

and all datasets were anonymised where 

appropriate. 

Data handling practices followed standard ethical 

guidelines for research involving publicly available 

environmental and socioeconomic data. Although 

no formal ethical clearance was required due to the 

non-human subject nature of the study, care was 

taken to respect institutional data usage terms, and 

the research purpose was aligned with sustainable 

development and environmental policy support. 

Future deployments of this model in operational or 

policy environments will need to ensure ongoing 

data governance, especially if integrating 

proprietary or household-level data, which would 

require further ethical review and possibly consent 

mechanisms. 

Preprocessing and Feature Engineering 

After cleaning, 1.6% of records were dropped due 

to missing or implausible values. Data was 

normalised using MinMaxScaler for uniform 

scaling. Lag features were created for key variables 

(e.g., precipitation lag-1, lag-7, lag-14) to account 

for delayed environmental effects. Interaction 

features such as PET were also engineered. The data 

was further systematically partitioned in a 

chronological manner into training, validation, and 

test subsets to ensure the robustness and 

applicability of the water deficit prediction models. 

This approach effectively mitigated the risk of look-

ahead bias, which could otherwise artificially 

enhance model performance in time-series 
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forecasting, while simultaneously preserving the 

intrinsic temporal sequence of the data. 

80% of the total dataset, equating to 4,088 daily 

records from the initial segment of the time series, 

constituted the training set. Additionally, a 

proportion of ten percent from this training phase 

was allocated for internal validation purposes, 

facilitating the monitoring of model performance 

throughout the training process and the optimisation 

of hyperparameters.  

This validation division upheld the models' ability 

to generalise and safeguard against overfitting 

within the training dataset. The test set comprised 

the residual 20% of the dataset, equating to 1,022 

daily observations that systematically followed the 

training phase in chronological order. This rigorous 

forward-chaining partitioning ensured that the 

assessment of the model emulated real-world 

deployment scenarios, wherein predictions are 

generated for future intervals that remain 

unobserved during the training process.  

Notably, random shuffling was intentionally 

eschewed to honour the sequential characteristics of 

the data. Time-lagged variables, exemplified by the 

prior day's water deficit (water_deficit_mm_lag1), 

were meticulously constructed exclusively from 

historical values pertinent to each prediction date, 

thereby preserving causality throughout the 

analysis. This meticulous design of partitioning 

bolstered the credibility of the predictive outcomes 

and mitigated the risk of any inadvertent 

information leakage from future data to past 

observations. 

To measure water deficit, real-world data that 

includes information on rainfall, evaporation, and 

runoff is required. The SWD equation provides a 

comprehensive model for assessing water 

availability by considering hydrological, 

meteorological, and socio-economic factors: 

SWD = (PET - f(S) ⋅ PET) + (P - R - I - ΔS) + E_s 

+ D + H + M + SE 

A crucial engineered feature was the Estimated Soil 

Water Deficit (SWD). This variable was central to 

target labelling and classification. 

 

Table 1: Summary of Predictor Variables, Correlation Strengths, Units, Resolution, and Justification 

for Inclusion 

  

Key Components: 

• Evapotranspiration Deficit: Maximum water 

loss due to evaporation and transpiration. f(S): 

Soil moisture function (0 to 1), adjusting PET 

based on available soil moisture. PET - f(S) 

PET represents water loss if moisture is not 

limited. 
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• Precipitation and Water Balance: Water input 

from rainfall. R (Runoff): Water does not 

infiltrate and moves as surface flow. I 

(Infiltration): Water that enters the soil profile. 

ΔS (Change in Soil Moisture Storage): Positive 

if soil moisture increases, negative if it depletes. 

• Soil Evaporation: Represents direct water loss 

from the soil surface. Significant in dry climates 

where soil evaporation is higher than 

transpiration. 

• Deep Percolation: Water moving below the root 

zone, contributing to groundwater recharge. It 

depends on soil type, permeability, and land 

use. 

• Hydrological Factors: H includes groundwater 

recharge, water table fluctuations, and 

catchment characteristics. Influences the 

availability and movement of water in a region. 

• Meteorological Factors: Includes temperature, 

humidity, wind speed, and radiation, which 

impact evaporation and precipitation. 

Determines seasonal variations in water 

balance. 

• Socio-Economic Factors: Represent water 

consumption for agriculture, industry, and 

domestic use. Population growth, urbanisation, 

and water management policies influence water 

demand and deficit. 

Model Architecture and Configuration 

The forecasting model architecture was built around 

advanced DL techniques, particularly LSTM 

networks, known for their ability to capture 

temporal dependencies in time series data. DL 

models are ideal for handling long-term 

dependencies, as they overcome the issues of 

vanishing gradients commonly found in traditional 

models by using specialised memory cells and 

gating mechanisms.  

To further enhance performance, derivatives of 

DLs, such as Bidirectional DLs, Encoder-Decoder 

DLs, Attention DLs, and Transformer DLs, are 

considered. The Bidirectional DLs processes data in 

both forward and backwards directions, capturing 

dependencies across the entire sequence. The 

Encoder-Decoder DLs is useful for multi-step 

forecasting, where input and output sequences differ 

in length. The Attention mechanism allows the 

model to focus on important time steps, improving 

prediction accuracy, while the Transformer DLs 

leverage self-attention for efficient parallel 

processing, making it ideal for large datasets.  

The implementation featured four specialised neural 

network architectures working in concert. Long 

Short-Term Memory (LSTM) networks, configured 

with 128-unit layers, proved particularly adept at 

analysing our 13-year time series data, successfully 

identifying the delayed impacts of rainfall patterns 

on groundwater levels. For processing static 

environmental variables like well characteristics 

and land use data, I implemented a five-layer Deep 

Neural Network (DNN) with ReLU activation 

functions. Spatial patterns from distributed sensor 

networks were effectively extracted using one-

dimensional Convolutional Neural Networks 

(CNNs) with a kernel size of three (3). These 

individual components were intelligently combined 

through a custom fusion layer that weighted their 

contributions based on validation performance. 

These models, either individually or in 

combination, form a flexible and robust 

architecture, ensuring accurate and efficient 

forecasting tailored to the specific needs of the task.  

• LSTM: Single LSTM layer (50 units), dropout 

= 0.2, dense output 

• DNN: Dense(128, ReLU) => Dense(64, ReLU) 

=> Dense(1) 

• RNN: SimpleRNN(50) => Dense(1)  

http://creativecommons.org/licenses/by/4.0/


East African Journal of Information Technology, Volume 8, Issue 1, 2025 
Article DOI: https://doi.org/10.37284/eajit.8.1.3543 

 

 

427 | This work is licensed under a Creative Commons Attribution 4.0 International License. 

 

• CNN: Conv1D(64, kernel_size=3, 

activation='relu') => MaxPooling1D => Flatten 

=> Dense(1) 

• All models except linear regression were used: 

o Loss Function: Mean Squared Error (MSE) 

o Optimizer: Adam (learning_rate = 0.001) 

o Epochs: 100 

o Batch Size: 32 

o Validation Split: 20% 

o Early stopping patience: 10 epochs 

Software and Programming Environment 

The study was implemented using Python in a 

Jupyter Notebook environment, leveraging open-

source tools to ensure reproducibility. Key libraries 

included Pandas and NumPy for data manipulation, 

Scikit-learn for preprocessing and evaluation, 

TensorFlow/Keras for developing deep learning 

models (LSTM, RNN, CNN, DNN), and 

Matplotlib/Seaborn for visualisations. Keras Tuner 

was used for hyperparameter optimisation. The 

choice of Python and its robust ecosystem enabled 

a transparent, scalable, and well-supported analysis 

framework suitable for academic and applied 

research. 

Simulation 

To demonstrate the performance of the DL 

Algorithms in the process of generating outcomes, 

models were built to integrate the proposed 

algorithms, as shown below. 

 

Figure 1: LSTM Model 
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Figure 2: CNN Model 

 

Figure 3: RNN Model 
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Figure 4: DNN Model 

 

Figure 5: Linear Regression Model for Baseline 

 

Evaluation Metrics 

The performance of the DL models for water deficit 

prediction was assessed using the following 

metrics: 

• Root Mean Square Error: RMSE quantifies the 

average magnitude of errors in predictions, 

providing a straightforward measure of model 

accuracy, where a lower RMSE indicates better 

performance. 

• Coefficient of Determination (R²): R² shows 

how well the model explains the variability of 

the target variable. Values closer to 1 signify 

that the model captures much of the variance in 

the data. 

 

SIMULATION RESULTS 

Model Performance Summary 

The values shown in the table form part of 

simulation / experimental results from a model 

evaluation process. Specifically, they present the 

performance metrics of four different deep learning 

models (LR, DNN, RNN, CNN, LSTM) used in the 

water deficit prediction study. 

Table 2: Model Performance Metrics 

  

 Model MAE        MSE      RMSE  R² Score    MAPE (%)     Pearson r  

0 Linear Regression 1.703 7.636042 2.76334 0.561026 52.356751 0.749658

1 DNN 1.11987 5.073141 2.25236 0.70836 50.90791 0.844722

2 RNN 1.63674 9.065892 3.01096 0.262243 125.05501 0.564597

3 CNN 1.60457 7.520119 2.74228 0.388033 70.634111 0.62631

4 LSTM 1.67643 10.43385 3.23015 0.262721 138.13231 0.561311

--- Model Performance Comparison ---
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Among these architectures, Deep Neural Network 

(DNN) stands out as the best model showing the 

best predictive accuracy in all performance metrics. 

It reaches the lowest error rates, with an MAE of 

1.12 as well as an RMSE of 2.25, which 

demonstrates its high precision in predictions. In 

addition, it supervises the most variance of the data 

set, R² of 0.71, and has the highest linear correlation 

to the target, r of 0.84. Furthermore, despite 

obtaining the minimum MAPE of 50.91% among 

the tested models, there is still potential for 

improving this accuracy measure.  

Contrastingly, Linear Regression (LR) serves as a 

strong counterpart model, giving decent predictive 

performance with an MAE of 1.70 and an R² of 

0.56. However, its biggest drawback is that it cannot 

deal with nonlinear relationships, so the data may 

have latent structures that a linear setup is unable to 

represent.  

On the other hand, the RNN and LSTM models 

perform much worse, with LSTM yielding the 

highest errors, 138% (MAPE) and 3.23 (RMSE), 

respectively. This weak performance might be 

because of a poor sequence model, a lack of 

engineered time features (like lagged variables or 

rolling averages), or sub-optimal hyperparameter 

tuning, leading to overfitting or underfitting.  

The results of the Convolutional Neural Network 

(CNN) are moderate but better than the RNN and 

the LSTM, but fall behind both DNN and Linear 

Regression. Since CNNs are originally designed for 

spatial data tasks such as image analysis, their 

unsatisfactory performance in sequential data tasks 

is not surprising. This observation highlights that 

CNNs might not be an appropriate model when 

dealing with time-dependent phenomena. 

The model comparison R² score value for the Deep 

Neural Network (DNN) of 0.708 is strong compared 

to all your other models, Linear Regression (0.561), 

CNN, RNN, and LSTM. This indicates that the 

DNN model somehow caught the stronger 

relationship of the input factors with the target 

response (water deficit) than the other models. In 

comparison with the recurrent models (RNN and 

LSTM), the performance difference is particularly 

striking as both produced worse R² scores (much 

less than 5) and higher errors. 

This excellent performance can be attributed to the 

capability of the DNN to learn intricate nonlinear 

features. Unlike Linear Regression, which assumes 

a linear relationship between each input feature (like 

soil moisture, PET, temperature, and rainfall) and 

the output, the DNN uses multiple layers and 

possesses nonlinear activation functions (for 

instance, ReLU), which allows it to model complex 

intercorrelations between variables. In addition, 

feature scaling (`standardization', in our case) helps 

stabilise training and encourage convergence, 

particularly with neural networks sensitive to the 

magnitude of inputs.  

Despite this admirable achievement, it should be 

noted that a good R² does not guarantee the model 

is generalising well. A measure of the possible 

overfit is the difference between the train and the 

test RMSE. In our case, the DNN’s training RMSE 

was notably lower, was ~1.4, compared to the test 

RMSE of 2.25; this suggests overfitting may be 

present even though the test performance is still 

better than other models. Therefore, it may be noted 

that, when training, RMSE is much smaller than test 

RMSE, the model is likely to have learned patterns 

present in the training data, possibly at the expense 

of generalizable trends. Such behaviour doesn't 

instil confidence in the model's utility for predicting 

real-world scenarios. 
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Figure 6: Residuals (prediction errors) 

 

Quantile-Quantile Plots 

The Q-Q (Quantile-Quantile) plots that are shown 

in the image visually assess the extent to which the 

residuals, i.e., the prediction errors, of each model 

satisfy the assumptions of the normal distribution. 

This adherence is a simple criterion of the modelling 

accuracy and consistency. 

In the case of Linear Regression, the residuals seem 

to be aligned close to the red diagonal line and 

somewhat form a vague shape of a bow-tie, 

indicating that the errors are close to normally 

distributed. This kind of behaviour is exactly what 

we wish to see; it indicates to us again that our linear 

regression model is not as bad as it seems at first 

sight; our premises about linearity and normality of 

errors are not so expected to be completely broken. 

The DNN model also delivers good performance in 

this analysis. Deviation from the red diagonal line is 

scattered in the Q–Q plot, such as in the centre and 

the tail, but most of the residuals are close to the 

normal expectation. This finding suggests that the 

DNN is efficiently extracting the main features from 

the dataset and introducing small amounts of 

systematic error. The model efficiency is supported 

by low error values and high R². 

On the contrary, the Q-Q plot of the Recurrent 

Neural Network (RNN) model has relatively larger 

curvature and bulging, significantly diverged from 

the red line, especially for the tails. Diverging 

patterns such as these suggest that the residuals are 

not normally distributed, which could imply 

skewness or heavy tails. Such a case might indicate 

that the method is ignoring important temporal 

relationships or is overfitting to noise in training 

data. 

The Convolutional Neural Network (CNN) model 

also faces difficulties in this aspect. As one can see 

on the Q-Q plot, at both ends we see significant 

departure from the red line, which indicates that the 

extreme prediction errors are not handled well. 

Taking into account the fact that CNNs are more 

focused towards spatial patterns, rather than 

temporal dependencies, such results indicate that 

there is an architecture versus nature of the problem 
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mismatch, more concretely, with respect to time 

series analysis. 

Finally, the Long Short-Term Memory (LSTM) 

model, which has a high performance for processing 

temporal sequences, shows the biggest change. Its 

Q-Q plot shows strong curvature and spreading in 

the tails, indicating asymmetric, non-normally 

distributed residuals. This result is an obvious 

indication of possible underfitting or configuration 

issues, like too short sequence length, insufficient 

training, and under-feature tuning. 

RESULTS 

Actual vs Predicted Water Deficit 

 

Figure 7: Combined Model Comparison: Actual vs Predicted Water Deficit 

  

The graph presents a side-by-side evaluation of four 

different deep learning models—LSTM, DNN, 

RNN, and CNN—against actual water deficit values 

over time. The black solid line represents the 

observed (true) values, while each model's 

predictions are shown using distinct coloured 

dashed lines: light blue for LSTM, orange for DNN, 

green for RNN, and red for CNN. 

From a visual standpoint, the DNN model stands out 

as the most accurate and consistent among the four. 

Its orange dashed line closely follows the actual data 

throughout the entire time series, capturing both low 

and high-water deficit values with relatively 

minimal error. The DNN handles the sharp peaks 

and variability in the data well, making it a strong 

candidate for real-world applications where 

precision across all levels of water deficit is crucial. 

In contrast, both the CNN and RNN models show 

signs of underperformance, particularly during 

high-deficit periods. The red and green dashed lines 

representing their predictions tend to flatten out or 

remain low when the actual values spike. This 

suggests that these models are more effective at 

recognising local or short-term patterns but struggle 

to extrapolate broader trends or react to sudden 

shifts. Their inability to capture the extremes limits 

their usefulness in scenarios where detecting water 

stress events is critical. 

The LSTM model, shown in light blue, offers a 

mixed performance. While it captures some patterns 

and trends in the data, its predictions are 

inconsistent and often misaligned with the true 

values, particularly during extreme deficit periods. 

This suggests that the LSTM, although designed to 

model long-term dependencies, may be hindered by 

an inadequate sequence length, insufficient training 

on extreme cases, or architectural limitations. As a 

result, the model appears to lag or produce overly 

smoothed outputs. 
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Table 3: Model Comparison and Interpretation of Classification Performance 

Model No Deficient 

Accuracy 

Mild Moderate Severe Key Observations 

LSTM 85.5% 0.0% 3.6% 7.8% Underpredicts high-deficit levels; 

needs tuning 

DNN 100.0% 100.0% 100.0% 100.0% Strong learner; may over-fit or mirror 

target 

RNN 89.4% 5.9% 0.0% 2.2% Captures dominant class; fails on 

minority classes 

CNN 91.8% 0.0% 0.0% 0.0% Detects major class only; lacks 

temporal depth. 

The performance of four deep learning models—

LSTM, DNN, RNN, and CNN—was assessed based 

on their ability to classify monthly water deficit 

levels in the Dodoma region. The water deficit 

values were categorised into four levels: No Deficit, 

Mild, Moderate, and Severe, and each model’s 

accuracy in identifying these categories was 

evaluated. 

The LSTM (Long Short-Term Memory) model 

demonstrated strong accuracy in predicting the “No 

Deficit” category, correctly identifying 85.5% of 

such cases. However, it struggled significantly with 

the remaining categories. The model failed to 

identify any “Mild” deficits and achieved only 3.6% 

and 7.8% accuracy for the “Moderate” and “Severe” 

classes, respectively. This suggests that while 

LSTM is effective in learning dominant patterns in 

time series data, it underperforms when it comes to 

recognising minority classes. The imbalance in 

class distribution likely caused the model to bias its 

predictions towards the more frequent “No Deficit” 

cases, indicating a need for model tuning and better 

handling of underrepresented classes. 

In contrast, the DNN (Deep Neural Network) 

achieved a perfect classification accuracy of 100% 

across all four categories. 

The RNN (Recurrent Neural Network) achieved 

high accuracy for the “No Deficit” class at 89.4%, 

and modest performance for “Mild” deficits at 

5.9%. However, it failed to correctly classify any 

“Moderate” cases and only identified 2.2% of 

“Severe” cases. This performance profile is like that 

of LSTM, though slightly less effective. The RNN 

was able to model the dominant class effectively but 

showed significant limitations in learning patterns 

associated with less frequent deficit levels, 

suggesting that it may benefit from techniques such 

as weighted loss functions or synthetic data 

augmentation to better learn from rare events. 

The CNN (Convolutional Neural Network) showed 

a similar bias toward the majority class. It correctly 

classified 91.8% of “No Deficit” cases but failed 

entirely in identifying any “Mild,” “Moderate,” or 

“Severe” deficits. CNNs are generally well-suited 

for spatial pattern recognition and may lack the 

temporal awareness required to capture the 

sequential dependencies present in time series data, 

such as climate and hydrological variables. This 

result underscores the importance of choosing 

architectures aligned with the nature of the dataset, 

particularly when dealing with sequential and 

seasonal phenomena. 

DISCUSSION 

The outstanding performance of the DNN is in line 

with findings from previous studies such as Chen et 

al. (2022), Fang et al. (2021), and Herbert et al. 

(2021), who noted similar achievements when using 

deep learning over traditional regression or 

statistical models. Noteworthy, Dikshit et al. (2021) 

underscored the enhanced forecasting capability of 
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LSTM networks in drought prediction. However, in 

our study, DNN proved a better fit. This could be 

accredited to DNN's ability to leverage a larger set 

of features without being constrained by sequential 

dependencies, which seemingly is an advantage 

over recurrent models like LSTM and RNN. 

Moreover, the current outcomes broaden the 

observations of de Souza Groppo et al. (2019) and 

Donghyun Kim et al. (2022) by employing deep 

learning in a semi-arid African context, which has 

been meagrely explored in existing literature. This 

circumstantial application brings unique insights 

into regional water stress prediction and 

management strategies. 

From a realistic standpoint, the developed DNN 

model can be deployed in early warning systems 

and decision support tools for proactive water 

resource management. Given the model's high 

accuracy and efficiency, institutions such as the 

Ministry of Water, municipal councils, and disaster 

management agencies can leverage it to anticipate 

deficits and trigger mitigation actions. For example, 

rainwater harvesting, seasonal borehole scheduling, 

or demand-side rationing plans can be better timed 

using model forecasts. 

Additionally, Impending studies may investigate 

ensemble learning methods as discussed by 

Zounemat-Kermani et al. (2021), or hybrid models 

integrating DNN with explainable AI (XAI) to 

enhance trust and interpretability in public policy 

contexts. Moreover, understanding uncertainty and 

incorporating real-time socioeconomic inputs (e.g., 

migration, crop switching, industrial expansion) 

could refine the model’s dynamic responsiveness. 

CONCLUSION AND FUTURE WORKS 

RECOMMENDATIONS 

Conclusion 

This study confirms that while deep learning offers 

powerful tools for time-series prediction, not all 

architectures perform equally. For water deficit 

forecasting in Dodoma, DNN outperformed more 

complex sequential models. These results provide a 

clear foundation for operational forecasting systems 

and offer directions for future innovation. 

Recommendations/Future Works 

The comparative evaluation of deep learning 

models—DNN, LSTM, RNN, and CNN—reveals 

significant variations in predictive performance and 

model suitability for water deficit forecasting. 

Among the tested models, the Deep Neural Network 

(DNN) stands out as the most reliable and accurate, 

demonstrating near-perfect prediction accuracy 

with minimal error. Its capability to model complex 

nonlinear relationships without requiring sequential 

data structuring makes it highly adaptable for real-

world operational use in early warning systems and 

drought preparedness planning. 

However, models such as LSTM, RNN, and CNN 

have shown limitations in isolation. These 

limitations stem primarily from their sensitivity to 

sequence length, memory constraints, or lack of 

temporal depth. Despite these shortcomings, this 

architecture should not be discarded altogether. 

They offer unique advantages—LSTM’s memory 

mechanisms, CNN’s pattern recognition abilities, 

and RNN’s temporal modelling potential—that can 

be effectively harnessed when used in hybrid 

configurations such as CNN-LSTM or Attention-

based RNNs. 

Given the importance of accurately forecasting 

water deficits for sustainable resource planning, a 

hybrid modelling approach is recommended. 

Combining the strengths of DNN with the temporal 

capabilities of LSTM or the feature extraction 

efficiency of CNN can produce robust and adaptive 

models capable of capturing both static and 

dynamic components of hydrological systems. As a 

result, this research recommends the following 

course of action: 

• The Deep Neural Network (DNN) should be 

adopted as the baseline model for operational 

deployment due to its superior predictive 
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accuracy and robustness. To further enhance 

model performance, particularly in capturing 

temporal dependencies, the use of a hybrid 

architecture, such as CNN-LSTM or Attention-

based LSTM models—should be actively 

explored. These models can leverage the 

strengths of both pattern recognition and 

memory retention. 

• In addition, the integration of domain-specific 

knowledge and contextual features, including 

remote sensing indices (e.g., NDVI), 

socioeconomic indicators, and relevant policy 

variables, is essential to improve the 

interpretability and applicability of the model 

outcomes. 

• Finally, it is imperative to implement a system 

for continuous model validation and retraining 

using updated datasets and scenario 

simulations. This will ensure that the models 

remain responsive to evolving environmental 

conditions, particularly those driven by climate 

change and anthropogenic pressures. 

This layered recommendation ensures both short-

term prediction accuracy and long-term model 

sustainability in water resource decision-making 

frameworks. 
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