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ABSTRACT 

Twenty local communities had received in Upper-Katanga their accreditation 

granting them perpetual management of their forest concession according to 

the Decree-Law No 14/018 of August 2nd, 2014, concerning the allocation 

of Forest Communities Based Management (FCBM). The objective is to 

reduce poverty, improve community livelihoods and reduce forest 

degradation and deforestation. Thus, community forestry serves as a 

management tool to address the numerous pressures on the Katangian open 

forest (Miombo Woodland), including deforestation and land cover changes 

which alter the structure and dynamics of vegetation cover and increase 

climate change effects. It also encourages the local communities to restore 

and conserve their forest heritage sustainably through FCBM. Consequently, 

the establishment of FCBM leads to changes in the spatial configuration of 

the Miombo landscape. To evaluate the impact of community forestry on the 

dynamic landscape of FCBM, Landsat images were used with a combined 

approach which integrated NDVI into the coloured composition to increase 

class separability for the final classification. The interpretation of the 

landscape dynamics was determinate by spatial indices (area, perimeter and 

number of patches). The accuracy and Kappa index were greater than 90% 

on all classifications carried out by spectral correspondence of 2021 image, 

for six defined land cover classes. The analysis shows that NDVI inclusion 

in the colour composition increases the separability of forest classes 

following its degradation gradient. Furthermore, spatial indices show that 

community forestry has greatly influenced spatial configuration, from 2017 

to 2019. The trend becomes downward between 2019 to 2021, thus 

demonstrating the impact of Covid-19 on the Miombo project results. This is 

visible through the number of patches, perimeter and area in each FCBM and 
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in turn, its landscape dynamics before Covid-19 forest area increased by 

more than 80% in each FCBM but after COVID-19 it decreased. However, 

this dynamic remains proportional to temporal fluctuations as the trends 

before and after COVID-19 are disproportionate. The community forestry 

project implementation in the Miombo woodland has led to a transformation 

in the forest areas and affected their extent, number, and type. Therefore, 

reassessing the project’s broad strategies is essential to ensure the 

sustainability of its activities in these areas. 
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INTRODUCTION 

Forest degradation is a significant landscape-related 

issue in the Congo Basin (Cabala et al., 2018; 

Muteya et al., 2023). Predominantly informal 

logging activities present a substantial limitation 

and major impediment to the effective management 

of forest resources (Mbarga, 2014). Several factors 

contribute to this situation such as charcoal 

production, timber exploitation, agriculture, 

urbanization, etc. (Nghonda et al., 2023), leading to 

forest impoverishment (Castillo et al., 2022) and 

diminishing the capacity of forests to maintain the 

ecosystem services productions (Godlee et al., 

2020) through changes in land cover (Bustamante et 

al., 2016; Sikuzani et al., 2019a, 2023).  

The forest management system in the Democratic 

Republic of Congo (DRC) is based on a colonial 

model that entrusts exclusive decision-making to the 

state and private industrial loggers (Baraka et al., 

2021; Nghonda et al., 2023), disadvantaging local 

communities. Additionally, there has been a 

significant population increase and the country's 

agriculture is insufficiently mechanized to satisfy 

the growing needs of the population (FAO, 2020). 

This observation indicates that centralist models are 

no longer suitable (Baraka et al., 2021) in light of 

the increasing subsistence needs of rural and urban 

populations (Kpatinvoh et al., 2016; Megevand et 

al., 2013) and suggests the necessity for transferring 

forest management to local communities (FAO, 

2020).   
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Following the Rio Earth Summit in 1992, 

researchers and civil society actors focused on no-

timber forest products (NTFPs) and questioned the 

dominant role of public and private decision-makers 

in forest management (MEDD, 2018). Some have 

criticized the national and provincial government's 

failure (Lescuyer et al., 2021), to ensure the 

sustainable management of forest ecosystems 

(Anantha et al., 2021); which constitutes a 

livelihood stock for local communities (LC), 

highlighting their undisputed importance. Using the 

revise forestry code of 2002, DRC adopted 

community forestry as a model for managing forest 

resources. This was implemented in 2014 through 

the institutionalization of Local Community Based 

Management (FCBM) (Baraka et al., 2022), aiming 

to empower LC in managing their territory while 

generating socio-economic benefits from forest 

resources management.  

Through significant lobbying by stakeholders 

implementing the community forestry (CF) project 

in south-eastern DRC and support from the 

province's political and administrative authorities, 

approximately twenty FCBMs in Upper-Katanga 

have received perpetual accreditation after meeting 

the requirements of Decree-Law No 14/018 of 

August 2, 2014, concerning the allocation of forest 

concessions to local communities (MEDD, 2018). 

The objective is to reduce poverty, improve 

community livelihoods (Adebu et al., 2019) and 

combat forest degradation and deforestation (FAO, 

2016). CF thus serves as a management tool to 

address the numerous pressures on the Katangian 

open forest (Miombo), including deforestation and 

land cover changes (Nghonda et al., 2023), which 

alter the structure and dynamics of vegetation cover 

(Jiagho et al., 2019). It also encourages LC to restore 

and conserve its forest heritage sustainably through 

FCBM. Consequently, the establishment of FCBMs 

leads to changes in the spatial configuration of the 

Miombo landscape.  

Given the above, the change in landscape 

configuration following the installation of FCBMs 

is evident. Sustainable management of the Miombo 

forest ecosystems, with a high degree of efficiency 

and security, requires a comprehensive 

understanding of the context, problems and potential 

solutions, considering the participation of all 

relevant stakeholders. This study aims to assess the 

impact of community forestry on the landscape 

structure of FCBMs forest ecosystems in the south-

eastern of the DRC, using remote sensing based on 

satellite images, according to the landscape 

transformation process based on spatial structure 

index, resulting from a supervised classification 

validated by control points describing the reality on 

the landscape. Throughout this study, the following 

questions will be examined and answered: Has the 

miombo project had an impact on the spatial 

configuration of FCBM in Miombo Woodland? Did 

covid-19 have any influence on the project’s results? 

MATERIALS AND METHODS 

Study Area  

Upper-Katanga province, an integral part of the 

Lubumbashi plain located in the southeast of the 

Democratic Republic of Congo, lies between 

latitudes 10 and 12 degrees south and longitudes 25 

and 28 degrees east (Cabala et al., 2018).  The study 

includes villages participating in the community 

forestry project piloted by the FAO in the Miombo 

open forest (MEDD, 2018). Three of these villages 

were visited: Milando, Kyunga and Musoshi, 

located 67km northeast, 80km north-east and 73km 

south of Lubumbashi city, respectively (Fig 1).  
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FIGURE 1. Geolocation of the Area of Interest in Upper Katanga, Southeastern of the Democratic 

Republic of Congo. It Comprises Three FCBMs in Red Colour: Milando (12,898 ha), Musoshi (17,411 

ha) and Kyunga (7,970 ha) (FAO, 2023). Landsat Image 2021, in Colour Composition With NDVI 

Layer on Red Channel, Band 2 on Green Channel and Band 4 on Blue Channel. 

 

These sites were selected due to their strategic 

location on main roads and their significance in 

supplying non-timber forest products and charcoal 

to Lubumbashi city Dubiez et al. (2020). These 

villages are situated near the RN2 trunk road, which 

experiences heavy traffic. They are part of the 

Katanga Copper Arc (KCA), as extensively 

described by Cabala et al. (2017). The local 

population primally engages in gathering, farming, 

charcoal production and artisanal mineral 

exploitation. Consequently, mining activities, 

carbonization and agricultural practices disrupt 

natural vegetation regeneration and succession 

processes, causing an imbalance in the landscape. 

The climate is divided into two seasons: the rainy 

season from November to March and the dry season 

from May to September. April and October are 

considered transitional months (Alexandre, 1977). 

The average rainfall is 1270 mm, while the average 

temperature and relative humidity are respectively 

around 20°C and 66% (Malaisse et al., 1978). The 

most dominant vegetation type is open forest 

miombo type, with scattered patches of vegetation 

following anthropization (Sikuzani et al., 2017; 

Cabala et al., 2018; Muteya et al., 2023). 

Data Collection and Processing  

Satellite Data   

The  LANDSAT8  satellite images, acquired 

via free download from the  United States 
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Geological Survey (USGS) on this link 

http://earthexplorer.usgs.gov/, were obtained on 

different dates. These four images were downloaded 

from October 23rd: September 15th, November 3rd 

and August 4th in 2015, 2017, 2019 and 2021 

respectively. During these months, chlorophyll 

activity is at the threshold because it is a period 

across rainy and dry seasons or the beginning of the 

rainy season. Therefore, vegetation is practically 

distinguishable and without edge effects. The area 

covered by a scene was 185km², and all FCBMs 

studied were covered. The images have a 

panchromatic band resampled to 15-m pixels while 

eight bands are multispectral resampled to 30-m 

pixels. To avoid clouds, images were acquired at 

different times but having similar solar illumination. 

There is a notable difference in radiometric 

resolution between them. The images were 

successfully pre-processed using QGIS 3.20. 

These four images were pretreated in order to 

calibrate their digital number values and converted 

on the absolute radiometric calibration factor and 

frequency range for each band (Lane et al., 2014); 

due to the difference in acquisition dates. Thus, the 

images obtained were converted into surface 

reflectance (TOC) based on solar spectral 

irradiance; and then georeferenced on Universal 

Transverse Mercator system zone 35S referenced to 

the WGS 84 ellipsoid.   

Delimitation Area and Unsupervised 

Classification 

A shapefile for each FCBM served as a mask layer 

to delimitate the study area (Oszwald et al., 2011), 

using multiple raster clips in QGIS 20.3 software. 

The shapefile results from the participatory mapping 

of the Miombo project piloted by the FAO and 

centralized at the Open Forest Observatory of the 

DRC. A single composition utilizing bands NDVI 

layer, 4 and 2 for red, green and blue channels 

respectively, was adopted for all images (Lane et al., 

2014); as colour compositions. This multispectral 

configuration provides the best visual result for 

identifying sample areas for each soil unit 

(Tahinarivony et al., 2017); as part of the reduction 

in contrast according to the degradation of forest 

evolution (fig 2). 

Among the variety of unsupervised classification 

methods such as K-mean, random tree and 

ISODATA (Lane et al., 2014); the ISO cluster 

classifier was selected in this research because of its 

straightforward and machine-based approach with 

minimized human intervention. Initial 10 clusters 

were created based on radiometric counts extracted 

from the red and near-infrared spectral bands, but 

classes exhibiting radiometric and thematic 

similarity were subsequently merged (Barima et al., 

2009). According to Bigot (2016), 4 to 6 land-use 

classes are sufficient for a cartographic analysis of 

this type of landscape. Finally, six classes were 

selected. 
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FIGURE 2. Representative Diagram of the Image Processing Methodology up to Classification 

Validation. 

 

NDVI Index and Sampling Design 

The Normalized Difference Vegetation Index 

(NDVI) specifically, was calculated to enhance the 

discrimination between different types of plant 

cover (Hountondji, 2017; Oszwald et al., 2011). The 

NDVI was derived and included in the TOC to 

define the last map which served to create the 

sampling set (Fig 3). The NDVI has been scaled 

linearly to a numerical range like the surface 

reflectance of multispectral bands, and the 

unsupervised classification was used in the final 

supervised classification as explained below. 

The NDVI provides an estimate of chlorophyll 

activity at various phenological stages (Djoufack, 

2011), and a well-established indicator of the 

presence and condition of vegetation. Due to its 

inverse relationship between chlorophyll absorption 

of red radiant energy increased reflectance of near-
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infrared energy for vegetation canopies. The NDVI 

is given by equation 1, its range of value goes from 

-1 (i.e., no chlorophyll activity detected) to 1 

(maximum chlorophyll activity). Vigor and 

abundant vegetation present high NDVI values due 

to a high reflectance in the near infrared spectrum 

channel which allows it to absorb more light in the 

red visible spectrum. However, very degraded, 

stressed or space vegetation has almost similar 

reflectance in both spectra (near-infrared and red). 

Therefore, their NDVI values are low or even zero. 

Water bodies yield negative values due to red 

reflectance larger than near-infrared reflectance. 

The NDVI values for bareland in rural areas are 

often above zero than in urban areas despite being 

close to zero, due to their similar reflectance in both 

bands. The difference in NDVI values between two 

years during the same season can indicate a change 

in land cover class (Tahinarivony et al., 2017). Thus, 

the NDVI image would be expected to enhance the 

discrimination between the different stages of 

degradation of the plant cover of FCBMs (fig 2). 

NDVI =
𝑁𝐼𝑅−𝑅

𝑁𝐼𝑅+𝑅
 (Equation 1)  

Where NIR: Near infrared; R: Red. 

 

FIGURE 3. Thresholds for NDVI Variation in the FCBM 
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Field data collection was necessary for classification 

validating and realized using a Garmin 65S GPS. 

Indeed, a vector grid of 500 × 500 m² was projected 

onto the 6 clusters derived from the unsupervised 

classification were loaded into a GPS receiver as a 

vector data layer. The 6 clusters obtained were 

visited in each FCBM. Polygons < 0.5 ha were 

deleted to limit the errors of the unsupervised 

unsieved ISODATA classification. A total number 

(120) of sites surveyed due to 40 by FCBM was 

limited following the size of the research team (two 

scientists) and the limited financial means for five 

days of fieldwork. Access to the sampling location 

was on foot or by motorbike. The control points 

were modified depending on the polygon size and 

unsupervised classes. 25 × 25 m² plots were installed 

in each unsupervised forest class. The central point 

of the vector grid constitutes the centre of each plot. 

Thus, the floristic inventory was carried out in each 

plot to assess the canopy cover. Furthermore, other 

types of land cover were identified, geolocated and 

recorded using GPS (water point, bareland, 

dwelling). These were used in the final 

classification. 

Training and Validation Datasets 

The 40-field sampling retained in each LCFC made 

it possible to create regions of interest (ROIs), 

transformed into a training dataset to calibrate the 

supervised classifier and a validation dataset to 

evaluate the classification accuracy. Based on 

spectral characteristics, the training data was 

grouped into 6 classes using ArcGIS (ESRI, version 

10.1). The spectral signature of training sites was 

examined using the RasterDataPlotting tool in 

QGIS 3.20 and determined that all cluster groups are 

separate. 

The validation process consisted of two steps: 

firstly, the visual verification of non-forest classes, 

and secondly, the definition of degradation levels for 

legend attribution as adopted in the FAO-piloted 

Miombo project (2016),  

The classifications were evaluated using the 

confusion matrix method (Pontius, 2000). This 

matrix allowed for the assessment of user accuracy 

calculated as a percentage of correctly classified 

pixels in class i (Pu (i)), according to equation 2.  

𝑃𝑢(𝑖) =  
𝑀𝑐(𝑖)

𝑚1
× 100 (Equation 2)  

where 𝑀𝑐(𝑖) represents the number of pixels 

assigned to class i and 𝑚1 is the total number of 

pixels of class i within the image.  

The producer's accuracy (𝑖) was determined using 

equation 3:  

𝑃𝑝(𝑖) =  
𝑀𝑐(𝑖)

𝑚2
× 100 (Equation 3)  

where 𝑚2 represents the number of pixels belonging 

to class i. A lower (𝑖) value indicates confusion 

between classes, while a higher value denotes 

reliability in class selection compared to samples 

from other classes.   

Overall accuracy (MPCC), representing the 

proportion of correctly classified pixels, was 

calculated using equation 4 (Congalton, 2001).  

𝑀𝑃𝐶𝐶 =
1

𝑛
∑ 𝑃𝑢(𝑖)𝑛

𝑖=1  (Equation 4)  

where 𝑛 is the total number of pixels in the matrix.  

The Kappa coefficient (𝐾̂equation 5), which 

indicates classification quality by comparing the 

accuracy of the pixel assignment to the total number 

of surveyed pixels (Landis & Koch, 1977; Pontius, 

2000), was calculated using Equation 5. 

𝐾̂ =
𝑛 ∑ 𝑀𝑐(𝑖)−∑ 𝑚1𝑚2

𝑟
𝑖=1

𝑟
𝑖=1

𝑛2−∑ 𝑚1
𝑟
𝑖=1 𝑚2

× 100  (Equation 5)  

where r is the number of rows in the matrix.  
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Supervised Classification of the Landsat 2021 

Image  

The supervised classification of the Landsat 2021 

image was conducted using the methodology 

outlined in Figure 3. These steps culminated in a 

supervised classification utilizing the maximum 

likelihood algorithm. This method creates a 

likelihood function and employs an optimization 

algorithm to maximize it, thereby assigning each 

pixel in the image to the land cover class with the 

highest probability of belonging (Collet, 2001; 

Congalton, 2001). However, due to the spatial 

resolution of the data (30 m), only six classes were 

discriminated in finally land cover classes for the 

three study areas. An accuracy assessment, which 

appeared as the user’s and producer’s accuracies, of 

the most refined classification level, was 

quantitatively assessed based on unsystematic 

sample validation pixels from ground-truth 

polygons.  

Supervised Classification of Landsat OLI/TIRS 

Images from 2015, 2017 and 2019  

The classifications of FCBMs for the years 2015, 

2017 and 2019 were derived by spectral matching 

with the final land cover classes from the 2021 

Landsat OLI/TIRS image, following the 

methodology outlined in Figure 2. In case of doubt, 

google Earth images were used for photo 

interpretation to confirm the class before final 

classification. These classes served as training areas 

for the maximum likelihood algorithm, which 

assigned each pixel to the land cover class with the 

highest probability of association. (Collet, 2001; 

Congalton, 2001). Additionally, each pixel was 

assigned a certainty index related to this 

classification choice (Barima et al., 2009).  

Assessment of Changes Detection 

The evolution of land cover classes was evaluated 

using transition matrices between two periods (t1 

and t0 ) (Bogaert et al., 2008) after superimposing 

the two land cover maps in GIS software (ArcGIS 

10.1) and manipulating them in Excel. The spatial 

structure of the landscape was quantified using three 

spatial indices: the number of patches (n), the area 

(a) and the perimeter of the patches (p). The number 

of patches provides information on the class 

fragmentation between two periods, while the 

perimeter provides information on its shape 

(Bogaert et al., 2008; Castillo et al., 2022). The 

interpretation of spatial dynamics was refined with 

the help of the decision tree suggested by Bogaert et 

al. (2004). A threshold of t = 0.5 was used in this 

study for decision evaluation based on the indices 

(n, a and p) (Cabala et al., 2018; Sikuzani et al., 

2024). The separation of the fragmentation and 

dissection processes was based on the value of tobs, 

(tobs = a /a10); if tobs < 0.5, fragmentation is detected 

and if tobs > 0.5, dissection is detected. Changes 

between two dates were defined using the rate of 

change formula (Te) proposed by (Munyemba, 

2010; equation 6). 

𝑇𝑒 =
𝑎𝑓−𝑎𝑖

𝑎𝑖
 (Equation 6)  

where 𝑎𝑖 is the total area of the class in the initial 

year and 𝑎𝑓 is the total area of the same class in the 

subsequent year. A positive Te indicates an increase 

in the area of the corresponding class, while a 

negative Te indicates a regression in the area of the 

class over time.  

RESULTS 

Definitions of Land Cover Classes  

The heterogeneity of the land cover in the FCBMs 

and the gradual transition from one class to another, 

resulting from the density of the vegetation cover 

and the size of the individuals, led us to carry out an 

unsupervised classification of the OLI/TIRS image 

with six land cover classes (Intact Open Forest, 

Degraded Forest, Demoted Forest, wooded 

Savannah, Grassland. Field work and spectral 
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characteristics of the classes enabled us to identify 

the similarity between classes and merge closely 

related ones. Despite the possibility of 

distinguishing many classes, six main classes were 

selected based on the FAO model and the group of 

practitioners involved in the Miombo project to 

implement the final classifications (Table 1). These 

classes are: 

Table 1: Classes Description Table 

Land Cover Class Description 

Intact Open Forest  

 

Represents the climax stage of the open forest characteristic in 

Lubumbashi plain (Malaisse, 2010); 

Degraded Forest  

 

Characterized by a gradual reduction in contrast compared to the intact 

open forest (Muteya et al., 2023), with small-scale human activities 

becoming visible; 

Demoted Forest  

 

Represents shrub and tree savannahs resulting from human activity 

and old fallow land or post-cultivation wasteland (Sikuzani et al., 

2020);  

 

Savannah  

 

Represents spring fallow land, flooded and exposed fields, meadows, 

or grassy savannah (Malaisse, 2018);  

 

Bareland  

 

This complex represents areas that have been heavily developed or 

rural constructions (Sikuzani et al., 2024);  

 

Water  

 

Represents water reservoirs and temporary puddles. 
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Validation of Land Cover Classifications from 

Landsat OLI Images  

Validation of the land cover classifications was 

acquired by confusion matrices (Tables 1, 2 and 3) 

through an accuracy and Kappa index. Accuracy 

remained at 94.45%, 91.93% and 90.54% for 

Milando, Musoshi and Kyunga, respectively.  

Milando: The classes were correctly chosen, as 

evidenced by the 𝑃𝑝 with the lowest 𝑃𝑢 of 90.26% 

corresponding to the intact open forest class; and the 

lowest ranked class is that of bare land with 87.88% 

of 𝑃𝑢 (Table 2). 

Table 2: FCBM Milando in Miombo Woodland of Democratic Republic of the Congo, Satellite Image 

Classification Validation Parameters in Absolute Values.  

Milando IOF DF dF SV BL W 

2015 

Pu 99,5 95,14 86,9 100 95,45 100 

Pp 97,17 95,8 96,8 100 95,45 100 

MPCC 93,35 

K 96,16 

2017 

Pu 100 87,5 91,95 96,9 60,2 73,9 

Pp 100 81,27 95,44 91,72 92,9 100 

MPCC 89,83 

K 85,34 

2019 

Pu 99,42 97,04 90,8 98,28 100 100 

Pp 97,55 96,87 96,36 98,56 85,19 100 

MPCC 97,6 

K 96,76 

2021 

Pu 91,3 92,31 96,7 99,65 87,88 100 

Pp 90,3 92,44 98,7 98,72 93,55 100 

MPCC 94,45 

K 92,22 

Pu: User accuracy, Pp: Producer accuracy, K: Kappa 

index and MPCC: Mean of correctly classified 

pixels (overall accuracy). 

Musoshi: The Pp of classes have the best ranked with 

100% accuracy scores for the 2021 classification. 𝑃𝑢 

followed by the demoted forest, intact open forest 

and savannah classes with a 𝑃𝑢 98.17%, 96.77% and 

88.39% respectively, compared with 68.24% for the 

degraded forest. The savannah (𝑃𝑝 = 100%), 

degraded forest (𝑃𝑝 = 98.30%), bareland (𝑃𝑝 = 97.76 

%) and Water (𝑃𝑝 = 96.67 %) are least affected by 

the samples from the other classes. Moreover, the 

intact open forest class (𝑃𝑝 = 67.80%) was more 

often chosen instead of the other classes (Table 3). 

The classification nevertheless remains valid given 

that all the 𝑃𝑝 and 𝑃u are beyond 60%. The accuracy 

decreased in 2021 because of the fragmentation date 

impact. 
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Table 3: Validation Parameters for the Classification of FCBM Musoshi in Miombo Woodland of 

Democratic Republic of the Congo, Satellite Images in Absolute Values.  

Musoshi IOF DF dF SV BL W 

2015 

Pu 99,29 99,64 96,69 100 100 100 

Pp 99,47 99,55 99,32 99,39 100 100 

MPCC 98,51 

K 97,76 

2017 

Pu 96,6 100 100 100 100 100 

Pp 100 99,3 100 100 100 100,0 

MPCC 99,44 

K 99,29 

2019 

Pu 98,36 98,38 100 99,27 100 100 

Pp 99,31 98,12 96,12 99 100 83,33 

MPCC 99,35 

K 99,15 

2021 

Pu 96,8 68,24 98,2 88,39 100 100 

Pp 67,8 98,3 81,4 100 97,76 96,7 

MPCC 91,93 

K 89,48 

Pu: User accuracy, Pp: Producer accuracy, K: Kappa 

index and MPCC: Mean of correctly classified 

pixels (overall accuracy). 

Kyunga: the intact forest class (𝑃𝑝 = 100%) was 

misclassified and more frequently selected in place 

of the other classes, while the bare land and water 

classes were often selected in place of the other 

classes, with respectively a 𝑃𝑝 of 61.90% and 

63.63% respectively. The bare land, very degraded 

forest and savannah classes were the best ranked 

respectively with a 𝑃𝑢 of 100%, 93.44% and 

92.92%, respectively, compared with 77.78% for 

the Water class (Table 4). 

 

Table 4: Validation Parameters of the Classification of FCBM Kyunga in Miombo Woodland of 

Democratic Republic of the Congo, Satellite Images in Absolute Values. 

Kyunga IOF DF dF SV BL W 

2015 

Pu 100 99,74 100 99,35 100 100 

Pp 99,86 100 100 100 69,23 100 

MPCC 99,84 

K 99,73 

2017 

Pu 100 100 99,59 98,07 100 100 

Pp 100 100 99,20 99,27 100 60,0 

MPCC 99,61 

K 99,41 

2019 

Pu 98,36 98,38 100 99,27 100 100 

Pp 99,31 98,12 96,12 99 100 83,33 

MPCC 99,35 

K 99,15 

2021 

Pu 87,95 91,12 93,44 92,92 100 77,78 

Pp 100 80,79 90,19 93,75 61,90 63,63 

MPCC 90,54 

K 88,51 
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Pu: User accuracy, Pp: Producer accuracy, K: Kappa 

index and MPCC: Mean of correctly classified 

pixels (overall accuracy). 

The Kappa coefficient (𝐾̂) was 92.22%, 88.51% and 

89.48% for Milando, Musoshi and Kyunga, 

respectively, indicating satisfactory classifications 

(Figures 3, 4 and 5). The validation results for the 

remaining classifications are correct, considering 

the overall accuracy and Kappa index which are 

above 88%; user accuracy and producer accuracy 

are also above 75% for all forest classes. However, 

to carry out the classifications of the Landsat 

OLI/TIRS 2015, 2017 and 2019 images, the NDVI 

values were combined in the image band to increase 

the separability of forest classes. The spectral 

correspondence of the land cover classes in the 

Landsat OLI/TIRS 2021 image shows good class 

separability across all the land cover classes from 

previous years achieving an MPCC (%) and 𝐾̂ (%) 

of 97.60% and 96.76%, respectively. The 2015 and 

2019 Google Earth images were integrated with the 

initial images for photointerpretation.  

Land Cover Mapping in FCBMs  

Six classes were retained for the last classifications 

of the FCBM landscape (Fig 4). The intact open 

forest is in continuous dynamics throughout the 

FCBMs as well as the savannah. The degradation of 

forest classes remains evident despite the 

installation of the Miombo project in 2017. The four 

apologia show the spectacular biannual change in 

land cover. Furthermore, the installation of the 

project shows an added value in the afforestation of 

forest classes and reducing anthropogenic classes. 

Community forestry has had a positive impact on 

forest class aggregation, which influenced FCBM 

landscape configuration.

 

Figure 4: FCBMs Land Cover Mapping in the Miombo Woodland of the Democratic Republic of the 

Congo (Milando, Kyunga and Musoshi). Landsat OLI/TIRS Images Downloaded Date October 2015, 

September 2017, November 2019, Août 2021. Maximum Likelihood Algorithm. 
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Dynamics of Land Cover Classes in FCBMs  

Between 2015 and 2017, forest classes (intact open 

forest, degraded forest) experienced a loss of cover 

to savannah classes (demoted forest and savannah) 

and anthropogenic class (Bareland) in all FCBMs 

(Fig 5). Forest areas showed continuous decreases 

in cover until 2021. Notably, from 2017 to 2019, a 

net increase in forest areas was recorded across all 

FCBMs, accompanied by a decrease in savannah 

and anthropogenic areas, except in Kyunga, where 

the savannah class changed at the same rate as forest 

areas during this period. Between 2019 and 2021, 

forest areas experienced a modest decrease in 

surface area, with losses to savannah and 

anthropogenic areas. The water class remained static 

in Kyunga and Musoshi, where as in Milando, it was 

dynamic over the time intervals, reaching a peak 

between 2017 and 2019.  

 

Figure 5: Assessment of Landscape Composition Elements at the scale of FCBMs in the Miombo 

Woodland of the Democratic Republic of the Congo. (a) Milando, (b) Musoshi and (c) Kyunga 

between 2015, 2017, 2019 and 2021; which IOF= Intact Open Forest; DF=Degraded Forest; dF= 

Demoted Forest; SV= Savannah; BL= Bareland and W= Water 
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Land Cover Dynamics in FCBMs between 2015, 

2017, 2019 and 2021  

Land Cover Transition in the Milando FCBM 

between 2015 and 2021  

Fig 6 below shows the types of land cover 

transitions in the Milando FCBM between 2015 and 

2021. Some land-use changes in Milando are more 

pronounced than others. Between 2015 and 2017, 

savannah areas increased dramatically from 5.22% 

to 21.19%; however, between 2017 and 2019, it is 

destroyed by -3,06%. Paradoxically in 2021, the 

area occupied by the savannah is 30.9% with a 

notable growth of more than 13% at the scale of the 

FCBM between 2017 and 2019. On the other hand, 

degraded forests grew from 32.29% to 60.62% 

between 2015 and 2017. Almost the same area 

gained between the previous years is lost between 

2017 and 2019 (-24.14%) and continues to decrease 

from 2019 to 2021 (-7.39%). A decrease in the 

demoted forest class is notable between 2015 and 

2017 (33.60 – 8.98%), with a contrary trend between 

2017-2019 (+14.41%), from 2019 to 2021 a modest 

decrease is remarkable (-1.78%). Intact open forests 

saw a decline of -20.08% between 2015 and 2017, 

compared with an increase of +15.56% between 

2017 and 2019 and a decline of -4.64% between 

2019 and 2021. The period from 2017 to 2019 shows 

an increasing in the areas of forest classes in their 

entirety. These constants show that the conversion 

dynamics in the Milando FCBM include 

deforestation, afforestation and savannization of 

forest areas. Anthropization and flooding are also 

important factors in Milando. 

Figure 6: Illustration of the Conversion Dynamics of Landscape Elements in Milando FCBM in the 

Miombo Woodland in the Democratic Republic of the Congo between 2015 and 2021 between 2015 

and 2021. IOF: Intact Open Forest, DF: Degraded Forest, dF: Demoted Forest, SV: Savannah 

 

Land Cover Transition in Musoshi FCBMs 

between 2015 and 2021  

The transitions between land cover over time are 

particular. There has been a steady increase and 

decrease in forest areas at Musoshi (Fig 7). Between 

2015 and 2017, the intact (-2.1%) and degraded (-

15.7%) open forest classes decreased, while the 
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31.4% for degraded forest, compared with a 

reduction in the total area of the demoted forest class 

(-26.3%) and the savannah class (-12.8%). 

Furthermore, between 2019 and 2021, a reduction in 

forest area is recorded, with a drop of -6.5% in the 

total area of the intact light forest class and -28.1% 

in the total area of the degraded forest class, 

compared with an increase in the total area of the 

degraded forest and savannah classes, with growth 

of +12.1% and +21.8% respectively.  Thus, the 

dynamics of conversion in the Musoshi FCMB 

include forest degradation, deforestation, 

afforestation and savannization. 

 

Figure 7: Illustration of the Conversion Dynamics of Landscape Elements in Musoshi FCBM in the 

Miombo Woodland in the Democratic Republic of the Congo between 2015 and 2021 between 2015 

and 2021. IOF: Intact Open Forest, DF: Degraded Forest, dF: Demoted Forest, SV: Savannah.  

 

Land Cover Transition in the Kyunga FCBMs 

between 2015 and 2021  

The transition between land-cover classes in 

Kyunga is as spectacular as in the other FCMBs 

assessed (Fig 8). Between 2015 and 2017, the total 

area of the demoted forest class increased by 

32.28%, while the total area of forest decreased by 

17.6% for intact open forest, -8.92% for degraded 

forest and 6.3% for savannah. Between 2017 and 

2019, the situation is reversed, with an increase in 

the total area of forest spaces of +7.77% for intact 

open forest and +23.25% for the degraded forest 

class, against a decrease in the total area of savannah 

spaces with -40.14% for the demoted forest class. 

On the other hand, there is a paradoxical increase in 

the total area of the savannah class (+9.59). Between 

2019 and 2021, a decrease in total area of -3.1% for 

intact open forest, -14.91% for degraded forest and 

-2.77% for savannah was recorded, compared with 

an increase of +20.53% for the demoted forest class. 

The dynamics of conversion in the Kyunga FCBM 

therefore include degradation, afforestation and 

degradation.  
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Figure 8: Illustration of the Conversion Dynamics of Landscape Features in Kyunga FCBM in the 

Miombo Woodland in the Democratic Republic of the Congo between 2015 and 2021. IOF: Intact 

Open Forest, DF: Degraded Forest, dF: Demoted Forest, SV: Savannah 

 

Structural Dynamics of the Forest Landscape in 

FCBMs  

Dynamics of Woodland Structures in Milando  

Between 2015 and 2017, the number of patches 

decreased for all forest classes and increased for the 

other classes. In addition, the surface areas of all 

classes increased, except for intact forest and water, 

which decreased (Fig 9). The most notable 

transformation process for all classes during this 

period, apart from the intact forest and water classes, 

was creation. The intact forest class underwent 

suppression and the water class fragmentation, with 

tobs.  = 0.46 less than t   = 0.5.  

Between 2017 and 2019, the number of patches will 

decrease for all classes except for the intact forest 

and water classes. Similarly, the surface areas of all 

classes are decreasing, except for the intact forest 

and water classes, which are increasing. Two 

transformation processes were notable during this 

period: creation for the intact forest and water 

classes, and deletion for the rest of the classes.   
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Figure 9. Illustration of Spatial Structure Indices Tendance in the Milando FCBM in FCBMs in the 

Miombo Woodland of the Democratic Republic of the Congo between 2015, 2017, 2019 and 2021.  

 

 

Between 2019 and 2021, the number of patches 

decreased for the Degraded Forest, Very Degraded 

Forest and Water classes, while increases were 

recorded for the Intact Forest and Buildings & Bare 

Ground complex classes. At the same time, a 

decrease in the number of areas was observed in the 

forest classes, apart from the very degraded forest 

class. During this period, various transformation 

processes were noted, including aggregation for the 

highly degraded forest and savannah classes, 

creation for the degraded forest class and deletion 

for the water class. The intact forest class and the 

built-up & bare soil complex show an increase in the 

number of patches at the same time as a decrease in 

the total area of the classes. Given the respective 

values of tobs.  = 0.93 and tobs.  = 0.85, all greater than 

t   = 0.5, the transformation process chosen is 

dissection.  

Structural Dynamics of Forest Areas in Musoshi  

Between 2015 and 2017, the number of patches 

decreased for all classes. The areas increase for three 

classes (highly degraded forest, savannah and the 

built-up & bare soil complex) and decrease for three 

others (intact forest, degraded forest and water). 

Two transformation processes were observed: 

aggregation and suppression (Fig 10).  

Between 2017 and 2019, the number of patches 

increased for all classes except for the bare land 

complex and water. Furthermore, an increase in the 
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total area was observed for the intact forest, 

degraded forest and built-up & bare soil complex 

classes, compared with a decrease in the total area 

of the other classes. The notable transformation 

process during this period was the creation of the 

intact forest and degraded forest classes, 

suppression of the water class, aggregation of the 

built-up & bare soil complex, and fragmentation of 

the highly degraded forest and savannah classes, due 

to tobs.  = 0.46 and tobs.  = 0.47 respectively, all of 

which are greater than t   = 0.5 (Figure X). 

 

Figure 10.  Illustration of Spatial Structure Indices Tendance in Musoshi FCBM in the Miombo 

Woodland of the Democratic Republic of the Congo between 2015, 2017, 2019 and 2021. 

 

 

Between 2019 and 2021, the number of patches 

decreased for all classes except for the degraded 

forest class, which undergoes an increase, and the 

water class, which remains static. Similarly, the total 

area of the classes decreases for most of them; 

however, it increases for the highly degraded forest 

and savannah classes. The transformation processes 

retained include deletion (intact forest and buildings 

& bare soil), enlargement (water), aggregation 

(degraded forest and savannah) and fragmentation 

for degraded forest, given the value of tobs.  = 0.47, 

which is lower than t   = 0.5. During the period from 

2015 to 2021, the transformation processes retained 

in the Musoshi FCBM were deletion, aggregation 

and dissection.  
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Dynamics of Forest Area Structures in Kyunga  

Between 2015 and 2017, the number of patches 

decreased in all classes apart from the water class. 

At the same time, the total area in the forest classes, 

except for highly degraded forest, increased in the 

other classes, except for savannah, which decreased 

(Fig 11). The transformation processes that stand 

out during this period include suppression (intact 

forest, degraded forest and savannah), aggregation 

(highly degraded forest and built-up areas & bare 

soil) and dissection for the open forest class, given 

the value of tobs.  = 1.25, which is higher than t   = 0.5.  

Between 2017 and 2019, the number of patches 

decreases in most classes, except for the intact forest 

and water classes. On the other hand, the total area 

increased in most classes, except for the highly 

degraded forest class and the built-up & bare soil 

complex. The transformation processes were 

creation (intact forest and water), aggregation 

(degraded forest and savannah) and deletion (highly 

degraded forest and the built-up & bare soil 

complex). 

Figure 11. Illustration of Spatial Structure Indices tendance in the Kyunga FCBM in the Miombo 

Woodland of the Democratic Republic of the Congo between 2015, 2017, 2019 and 2021. 
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Between 2019 and 2021, the number of patches 

decreases for all classes apart from the bare land 

complex. Similarly, the total area decreases in most 

classes except for the highly degraded forest class 

and the built-up & bare soil complex. The notable 

transformation processes were deletion (intact 

forest, degraded forest and water), aggregation 

(highly degraded forest) and creation for the bare 

land.  

Between 2015 and 2021, considering the dynamics 

of the structures in the Kyunga FCBM. The most 

notable changes were deletion, aggregation and 

creation. 

Table 5. Spatial Indices Between 2015, 2017, 2019 and 2021 and Identification of Transformation 

Processes (SPT) Based on the Decision Tree of Bogaert et al. (2004) in FCBMs in the Miombo 

Woodland of the Democratic Republic of the Congo.  

FCBM Milando 

 IOF DF dF SV BL W 

CA2015 34,71 42,55 43,34 6,74 0,85 0,8 

NP2015 3454 5704 5894 1579 144 120 

CA2017 7,78 78,2 11,58 27,33 3,73 0,37 

NP2017 1316 4152 3625 4016 1022 165 

SPT2015-2017 Attrition Aggregation Aggregation Creation Creation Fragmentation 

CA2019 27,85 47,05 30,17 22,09 0,75 1,08 

NP2019 1962 2763 3110 1442 310 379 

SPT2017-2019 Creation Attrition Attrition Attrition Attrition Fragmentation 

CA2021 21,86 37,52 28,2 40,76 0,63 0,01 

NP2021 3405 2435 3162 654 315 3 

SPT2019-2021 Dissection Attrition Aggregation Aggregation Fragmentation Attrition 

FCBM Musoshi 

CA2015 4,52 65,01 70,1 31,94 1,79 0,38 

NP2015 289 2362 2761 1723 15 7 

CA2017 0,8 37,63 91,46 41,6 1,91 0,34 

NP2017 138 899 787 888 59 5 

SPT2015-2017 Attrition Attrition Aggregation Attrition Aggregation Dissection 

CA2019 15,15 92,19 44,64 19,21 2,24 0,32 

NP2019 1276 987 2773 2453 216 4 

SPT2017-2019 Creation Aggregation Attrition Aggregation Attrition Creation 

CA2021 3,82 43,52 65,95 58,95 1,6 0,27 

NP2021 554 2789 2662 746 61 4 

SPT2019-2021 Attrition Attrition Aggregation Attrition Creation Attrition 

FCBM Kyunga 

CA2015 25,08 23,99 19,18 11,11 0,01 0,02 

NP2015 801 1761 1059 426 3 7 

CA2017 11,12 16,91 44,83 6,1 0,44 0,02 

NP2017 491 1109 913 285 221 15 

SPT2015-2017 Attrition Attrition Aggregation Aggregation Aggregation Attrition 

CA2019 17,29 35,38 12,87 13,72 0,04 0,14 

NP2019 1645 1105 838 238 10 105 

SPT2017-2019 Creation Creation Fragmentation Fragmentation Aggregation Attrition 
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FCBM Milando 

 IOF DF dF SV BL W 

CA2021 14,83 23,54 29,52 11,52 0,24 0,05 

NP2021 700 736 289 140 146 30 

SPT2019-2021 Attrition Fragmentation Aggregation Aggregation Attrition Elongation 

ICF: Intact open forest, DF: Degraded Forest, dF: 

demoted forest, SV: Savannah, BL: Bareland and 

W: Water.  CA: class area, NP: number of patches. 

The indices in Table 5 made it possible to detect 

changes in the spatial structure of FCBMs landscape 

studies over 4 years. The number of patches for 

forest classes increased between 2017 and 2019 

from 1317 to 1962; 138 to 1276 and from 491 to 

1645 for intact open forests in Milando, Musoshi 

and Kyunga respectively. On the other side, the 

savannah classes decreased from 1442 to 654 and 

285 to 238 in Milando and Kyunga respectively. 

Paradoxically, savannah areas increased in the same 

period from 888 to 2453. this indicates the creation 

of other dense forests and the fragmentation of 

savannah areas in the FCBMs. And creation trend is 

confirmed by the increase in the mean areas of intact 

open forest in all FCBMs. This demonstrates the 

impact of community forestry on the spatial 

structure of the miombo woodland. Below is the 

explicit diagram of existing conversions between 

classes within FCBMs (Fig 12). The degradation of 

higher forest classes (OIF and DF) goes from 

demoted forest to savannah. The intermediate 

element of distribution of portions of surface areas 

is the Demoted Forest class (very degraded forest). 

A conversion of 8.39% and 4.54% demoted forest to 

savannah is notable in 2021, in Musoshi and Kyunga 

respectively; which adds 12.12% conversion 

between savannah and bare land in Milando in the 

same year. Direct conversions between the Demoted 

Forest and water involve the establishment of 

settling basins for mining companies and temporary 

water slopes.

Figure 12. Diagram of the Conversion Dynamics of Landscape Elements in FCBMs in the Miombo 

Woodland of the Democratic Republic of the Congo. Solid Lines Show Primary Conversions While 

Dashed Lines Show Secondary Conversions.  
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DISCUSSION 

Definition of land cover classes: The use of remote 

sensing to monitor vegetation cover is essential 

because it quickly makes available information that 

can be used by decision-makers to properly manage 

forest areas (Sarr, 2009). This technology has been 

crucial for monitoring the landscape in the FCBMs. 

Taking into account the demographic growth 

recorded over the last few decades in the 

Lubumbashi plain (Sikuzani et al., 2020) in 

conjunction with climatic variations, leading to 

major environmental upheavals (Bachinyaga et al., 

2022). The landscape structure in the FCBM has 

been influenced by community forestry, both in how 

it looks and in how it's composed. Defining the 

classes was not an easy task and required a 

combination of other layers, in this case NDVI, to 

clearly distinguish the land cover classes.  

The fragmentation and degradation of forest classes 

since 2017 are the reason for the rarefaction of 

natural resources, accentuated in particular by the 

growing demand for charcoal (Dubiez et al., 2020), 

the opening up of large areas to serve mining 

companies and the rapid conversion of natural 

vegetation into farmland to meet the food needs of 

local communities (Faucon et al., 2018). It is 

therefore important to assess possible changes in 

land cover over time and space. Most of the 

landscape dynamics in the Lubumbashi plain have 

been studied using specific time intervals, which are 

often respected in the selection of satellite images 

(Cabala et al., 2018; Munyemba, 2010; Sikuzani, 

2019). The characterization of the evolution of these 

areas through satellite images taken at different 

seasonal dates has enabled the analysis and 

summary of the transformation processes of 

vegetation cover over time, highlighting any 

seasonal effects among the different variables.  

The choice of images on different shooting dates did 

not affect the results. The only class cover to have 

suffered the effect of the dates is water, following 

the streams in the region. Thus, it could appear and 

disappear from one image to another because of the 

season effect. Furthermore, the heterogeneity of the 

classes, with their almost similar physiognomy, did 

not make it easy to establish definitive occupancy 

classes. To achieve this, the correspondence of 

spectral signatures allowed us to merge very similar 

classes. The same technique was used by Cabala et 

al., (2018). who, after performing an unsupervised 

classification, merged the classes with the closest 

signatures to facilitate a diachronic study. As a 

result, only six classes were retained, making it 

possible to highlight the impact of community 

forestry on the landscape structure of FCBMs in the 

Miombo woodland. The selection of 2015 as the 

starting point was systematic because it shows the 

trend of forest cover before the start of the project 

activities and makes it possible to highlight the 

impact of the project on it. The decreasing trend in 

forest cover between 2015 and 2017 was even the 

additional motivation for the project´s establishment 

in this region. 

Validation of land cover classifications from 

Landsat OLI images: The method used to analyse 

the transition modalities between different dates is 

based on transition matrices (Cabala et al., 2018b). 

Although this method is simple to implement, it can 

lead to an accumulation of classification-specific 

errors, such as Pontius (2000). However, it remains 

robust with respect to variations in image conditions 

(Lefebvre et al., 2011). In this study, it was applied 

to analyse images from the same sensor taken at 

different dates. We did not encounter significant 

issues when mapping land cover using Landsat 

imagery. While Landsat images have a medium 

spatial resolution, they do not capture all details in 

contexts where landscape transitions occur 

gradually and in mosaics (Cabala et al., 2017). 

Nonetheless, they provide a general overview of 

land cover evolution in the FCBMs, this has allowed 

us to highlight the impact of the project on the latter 

while offering further opportunities to enrich the 

analysis. For detailed analysis, particularly along 
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deforestation fronts, very high-resolution images 

(e.g. SPOT) are essential (Lane et al., 2014). Despite 

this, the classifications in our study are satisfactory 

and statistically consistent, following Pontius's logic 

(2000) and Landis & Koch (1977). which shows that 

overall accuracy greater than or equal to 75% is 

sufficient to validate a classification. The same logic 

applies to the kappa index. On average, the overall 

accuracy is 93.8% for Milando FCBM and 97.3% 

for Musoshi and Kyunga (Table 2,3,4). The Kappa 

index was 92.6, 96.4 and 96.7% for Milando, 

Musoshi and Kyunga respectively. These values 

were higher than those previously found by (Cabala 

et al., 2018) and almost identical to those later found 

by Sikuzani et al. (2024) in the same region. This 

shows that our classifications are acceptable and can 

be subjected to analysis. 

Land cover mapping in FCBMs: The four 

landscape transition figures give a visual idea of the 

biannual changes between land use classes (Figure 

3). This could be due to the upsurge in human 

activity resulting from the increased demand for 

charcoal in large urban areas without any policy to 

manage deforested areas.  The densification of forest 

areas is clearly marked between 2017 and 2019, 

with a marked return of the intact open forest and 

degraded forest classes (Figure 4). This can be 

explained by the fact that the implementation phase 

of the Miombo Project will be in full swing during 

this period, and its achievements in the Lubumbashi 

region to date are by no means negligible (Murhula, 

2021). The project focused on landscape restoration 

and the development of non-timber forest products, 

in this case, the development of the seed industry, 

other sources of income and so on.  

These activities have been beneficial and have 

enabled many people to systematically abandon 

charcoal production, the main driver of 

deforestation and degradation of the Miombo 

woodland of the Lubumbashi region (Cabala et al., 

2018). From 2019 to 2021, there is a decrease in 

forest area in favour of savannah (Figure 4). This 

can be explained by the fact that the efforts of the 

project came to a halt with the outbreak of the covid-

19 pandemic. During this period, most sources of 

income were suspended because of the curfew. To 

meet the needs of households in precarious 

situations, the forest areas were used as an element 

of production and charcoal-making became the 

preferred activity. This demonstrates the importance 

of this ecosystem to the local communities and the 

need to conserve it so that it can continue to provide 

the ecosystem services that are so important to both 

urban and rural communities. Later work in the 

same region by Lescuyer et al. (2021) and others 

supports this hypothesis, FAO (2010) and Dubiez et 

al. (2020). Also, shows that the landscape structure 

of the FCBMs has been significantly affected by 

human activity, and community forestry has been 

identified as one of the actions to support the 

recovery of the landscape structure. The impact of 

community forestry between 2017 and 2019 is a 

monitor to understand the impact of community 

forestry on the landscape structure of the FCBM in 

the Miombo woodland. 

Dynamics of land cover classes in FCBMs: 

Despite the possibility of regenerating several 

spatial structure indices, only three were retained in 

this study, as suggested by Bogaert et al. (2008). The 

same indices had been used by Sikuzani et al. (2024) 

and Munyemba (2010) to assess the spatial structure 

in the Miombo woodland. There are the number of 

patches, area and perimeter. This also allowed us to 

assess the impact of community forestry on the 

spatial structure of FCBMs. The trends observed at 

Milando, Musoshi and Kyunga scales are similar, 

and highlight the major changes that the landscape 

has undergone since 2015 (Figure 4). An expansion 

of savannah areas (demoted forest and savannah) 

has been observed; this is taking place away from 

the dwellings of local communities, charcoal 

production sites and along the main roads.  

Moreover, this is happening at the expense of dense 

forest areas (intact and degraded forest) which are 
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undergoing continual regression (Sikuzani et al., 

2023). On one hand, the use of these areas provides 

new fertile farmland, increasing agricultural 

production (Echezona et al., 2011). On the other 

hand, it increases the percentage of bare land 

abandoned after charcoal production, accentuating 

exacerbating soil degradation (FAO, 2016) leaned to 

savannization (Chicouène, 2006; Faucon et al., 

2018). This is the reason for the spectacular changes 

that create illogical transitions between land cover 

classes, in this case from intact open forest to 

savannah (Figure 5,6,7). These transitions are rare, 

but they do exist in FCBMs. Similar observations 

were made by Barima et al. (2009) in the forest-

savannah transition zone of Ivory Coast. They found 

that open forests decreased by 39% in favour of 

savannah classes. The increase in these factors is the 

result of the erratic supply of electrical energy, 

which is a limiting factor in efforts to conserve the 

Miombo woodland in the Lubumbashi region 

(Cabala et al., 2018).  

In addition, the use of improved fireplaces and 

bricks derived from ecological coal remains until 

now (Nge et al., 2020), practical solutions to reduce 

deforestation in miombo according to the social 

context of the country. This could reduce or even 

stabilise deforestation and forest degradation. In 

turn, the spatial structure of the Miombo woodland 

could be restored. The period from 2017 to 2019 

shows a significant densification of forest areas 

(Figure 5,6,7). This is due to the impact of the 

Miombo project, which aims to restore DRCongo’s 

Miombo ecosystems to reduce poverty and increase 

the income of local communities through the 

rational management of forest areas. However, the 

reverse trend between 2019 and 2021 is largely due 

to Covid-19. Indeed, during the pandemic, project 

activities were reduced to a minimum and local 

communities returned to their old habits at an 

exponential rate. This led to the over-exploitation of 

forest areas, thus counteracting the impact of the 

project in the region. Sikuzani et al. (2024) 

corroborate this fact by showing a negative trend in 

the development of forest areas as opposed to non-

forest areas during the Covid-19 period. 

Structural dynamics of the forest landscape in 

FCBMs: As observed by Munyemba (2010) and 

Sikuzani et al. (2019) in the Lubumbashi region, the 

results of this study align with the reported by 

Barima et al. (2009) in Ivory Coast, where 

significant changes in forest areas were noted in the 

Tanda transition zone, highlighting a substantial 

reduction in forest area in favour of savannah 

formations.  Analysis of the spatial structure indices 

clearly shows the rapid degradation of forest areas 

in the FCBMs (Figure 8,9,10). The annual rate of 

degradation decreased from 39% between 2015 and 

2017 to 11% between 2019 and 2021 in Milando 

(Figure 8); from 41% to 37.5% in Musoshi (Figure 

9) and from 28% to 7% in Kyunga (Figure 10) over 

the same period. The trend is regressive and is 

attributable to the efforts made by the Miombo 

project between 2017 and 2019. In addition, the 

overall rate of degradation between 2015 and 2021, 

depending on the axis, was 5.8% on the Likasi axis 

compared with 2.14% on the Kasumbalesa axis, 

which is still much higher than the country's average 

deforestation rate, estimated at 0.2% (Sikuzani et 

al., 2023).  

Furthermore, analysis of the indices revealed that 

forest areas in the FCBMs are predominantly by 

degraded forest class (Figure 5,6,7), similar to 

findings in the Pama partial wildlife reserve in 

Burkina Faso by Soulama et al. (2015). In Milando, 

forest classes are highly fragmented compared to 

other FCBMs, akin to observations in the Amazon 

by Castillo et al. (2022), with transformation 

processes beginning with perforation or dissection, 

as demonstrated by Cabala et al. (2018) in the 

Lubumbashi region. In contrast, forest classes in 

Kyunga are compact, with continuous regression. 

This is probably because Kyunga is a new village, 

and human activity is still controlled. However, with 

mining companies already encroaching on the 

northern most part of the FCBM, this reality is likely 
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to change soon. These findings are consistent with 

those of Bogaert et al. (2011), indicating that 

increased accessibility to the primary forest in 

Milando leads to landscape change (Bamba, 2012; 

Sikuzani et al., 2020). Mining activities, remarkable 

in all the FCBMs, accelerate transformation 

processes by opening up roads that serve as 

corridors for transporting charcoal to large cities 

(Onguene et al., 2018).  

Furthermore, the Musoshi FCBM supports the thesis 

of Vranken et al. (2015). They show that the 

influence of human activities on surrounding natural 

resources depends on village size; this is evidence 

that community forestry is a useful element in the 

configuration and composition of land in the 

Miombo woodland. According to Mouhamadou 

(2019), these landscape indices make it possible to 

validate the detection changes by revealing three 

notable processes in the FCBMs. Initially, 

savannization is characterized by the degradation of 

intact and degraded open forest areas in favour of 

savannah areas (Figure 11). Consequently, the loss 

of intact and degraded open forest areas to other 

land-cover classes characterized deforestation.  

Finally, afforestation results in an increase in the 

relative density of woody species within forest 

classes, following the dynamics of natural 

succession combined with community forestry 

actions. This corroborates the results found by 

(Nkombe et al., 2023) in the Mikembo sanctuary in 

Upper-Katanga.  

The once compact forest areas are now opened in a 

matrix dominated by savannah areas (Sikuzani et 

al., 2023). Customary land law dictates that the plant 

resources in a plot of land belong exclusively to the 

landowner and, by default, to the chief of the land 

(Forestier, 2002). This provision often leads to 

conflicts, as the reduction in plant production results 

in the exploitation of forest areas (Tchatchou et al., 

2015). In the study area, customary decisions take 

precedence over those of the FCBM management 

committees, rendering the committee powerless to 

implement good governance practices (Baraka et 

al., 2022; Nghonda et al., 2023). Furthermore, the 

degradation of the vegetation cover in the FCBMs is 

primarily due to human activities (Muteya et al., 

2023; Sikuzani et al., 2023) and climatic variations 

(Gansaonré, 2018; Hountondji, 2017).  

Moreover, production systems in the study area are 

extensive (FAO, 2016), i.e. depending on the 

increase in cultivated area to increase yield. The 

nature of the agricultural dynamics observable in the 

FCBMs area is largely driven by the evolution of 

charcoal production. Nge et al., (2020) found that 

the informal nature of charcoal production 

accelerates land cover changes in the Lubumbashi 

hinterland, due to easy access to wood resources 

(Barros et al., 2022). Consequently, abandoned 

fields are increasingly converting to savannahs, 

further diminishing forest cover (Soulama et al., 

2015). This shift poses a threat to agriculture, as 

recent increases in agricultural production in the 

West African sub-region have been largely due to 

the expansion of cultivated land, as observed by 

Djoufack (2011). Miombo project implementation 

shows growth in spatial structure indices between 

2017 and 2019, while this trend declines between 

2019 and 2021, with an increase in the number of 

patches indicating forest fragmentation or dissection 

(Table 5).  

Hence results, biodiversity is being lost due to the 

destruction of many natural habitats (Ndavaro et al., 

2021; Tshanika et al., 2023), mining directly 

degrading biodiversity in the FCBMs through 

mineral extraction (Pa et al., 2010), and permanent 

risk of amplification of environmental and public 

health problems due to the copper and cobalt surface 

soils contamination (Faucon et al., 2018).  In this 

sense, regular monitoring of changes in land use, as 

has been done in this work, shows that land cover is 

a fundamental variable in environmental 

management and in understanding how it works. 

Covid-19 has negatively affected the project’s 

efforts as shown by the regressive trend in the period 
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between 2019 to 2021 (Table 5). This finding 

corroborates the one found in the same area by 

(Sikuzani et al., 2024). This would be due to the 

cessation of support activities for the local 

committees in the process of implementing and 

appropriating project objectives from May 2019 to 

November 2020 (Sikuzani et al., 2024). This 

resulted in the return of charcoal production 

activities to serve large agglomerations with an 

exponential increase of actors looking for how to 

survive (Murhula et al., 2025). Land conflict is a 

second element that promotes the loss of 

biodiversity in FCBMs.  

Mining companies are responsible for most of the 

conflicts (Messina, 2014). A topological study that 

can define the number of terminals for each FCBM 

according to its shape is necessary for their integral 

protection while prioritizing the restoration of 

positive relations between mining companies and 

local communities by developing a common centre 

of interest. 

CONCLUSION 

This study assessed the impact of community 

forestry on the landscape dynamics of FCBM in 

Upper-Katanga, using a diachronic analysis of land 

cover between 2015 and 2021.  The results reveal 

significant changes in the FCBM forest areas. 

Trends observed in Milando, Musoshi and Kyunga 

indicate substantial degradation since 2015, leading 

to the expansion of demoted forest and savannah 

areas. The period between 2017 to 2019 highlights 

the impact of community forestry on FCBM's spatial 

configuration, with the densification of savannah 

areas promoting afforestation within the region. The 

transformation of forest areas has affected their 

extent, number, and type. The Miombo community 

forest management project has notably contributed 

to the regression of dense vegetation areas (intact 

and degraded open forest). Spatial analyses indicate 

that degraded forests are the dominant class in most 

FCBMs, with Intact Open Forests in continual 

decline. Therefore, reassessing the project’s broad 

strategies is essential to ensure the sustainability of 

its activities in these areas. 
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