Use of Artificial Intelligence in Logistics: Potentials and Limitations in Shopping Basket Analysis and Shipping Optimisation
Abstract
The increasing integration of artificial intelligence (AI) into logistics processes is changing conventional decision-making structures. In e-commerce logistics in particular, the question arises as to whether algorithmic systems lead to efficiency gains without undermining transparency and responsibility. The study combines a theoretical-conceptual analysis with a case study of the company Zalando. Existing literature is systematically evaluated in order to examine technical, organisational and ethical aspects of AI use in shopping basket analysis and shipping optimisation. AI systems can make shipping logistics more precise, faster and more individualised. At the same time, new risks arise such as algorithmic intransparency, biased decisions and data-based dependencies. Without stable data infrastructures and human control, many advantages remain hypothetical. For AI to be used responsibly in logistics, comprehensible rules, ethical guidelines and robust data structures are required. The study shows that progress depends not only on technological performance, but also on a conscious approach to responsibility
Downloads
References
Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-López, S., Molina, D., Benjamins, R., Chatila, R. &Herrera, F. (2020) 'Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges towards responsible AI', Information Fusion, 58, pp. 82-115.
Asdecker, B. (2013) Retourenmanagement im Versandhandel: Eine empirische Analyse von Ursachen, Auswirkungen und Erfolgsfaktoren. Bamberg: Otto-Friedrich-University Bamberg. https://fis.uni- bamberg.de/bitstream/uniba/6318/1/LSCM10AsdeckerDissopuskA2.pdf [Accessed: 28 May 2025].
BVL (2023) Trends and Strategies in Logistics and Supply Chain Management 2023/2024: Triple Transformation - Digitalisation, Sustainability and Resilience. Bremen: Bundesvereinigung Logistik e.V. https://www.bvl.de/files/1951/1988/2128/TuS2324_Studienbericht.pdf [Accessed: 28 May 2025].
Bengio, Y., Lecun, Y. & Hinton, G. (2021) 'Deep learning for AI', Communications of the ACM, 64(7), pp. 58-65.
Binns, R., Veale, M., Van Kleek, M. & Shadbolt, N. (2018) '"It's reducing a human being to a percentage": Perceptions of justice in algorithmic decisions', Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1-14.
Boysen, N., de Koster, R. & Weidinger, F. (2021) 'Warehousing in the e-commerce era: A survey', European Journal of Operational Research, 289(2), pp. 399-422.
Christopher, M. (2016). Logistics & Supply Chain Management. 5th edn. Harlow: Pearson Education.
Crainic, T. G. & Laporte, G. (1998) 'Planning models for freight transportation', European Journal of Operational Research, 97(3), pp. 409-438.
Crawford, K.& Paglen, T. (2021) 'Excavating AI: The politics of images in machine learning training sets', AI & Society, 36(1), pp. 1-10.
Danaher, J. (2016) 'The threat of algocracy: Reality, resistance and accommodation', Philosophy & Technology, 29(3), pp. 245-268.
ZEW – Leibniz Centre for European Economic Research. (2024, May). Digital sovereignty: German companies see a need for action. https://www.zew.de/presse/pressearchiv/digitale-souveraenitaet-deutsche-unternehmen-sehen-handlungsbedarf
Fraunhofer SCS (2023) Supply Chain AI: Artificial Intelligence in Logistics and Supply Chain Management. Erlangen: Fraunhofer Institute for Integrated Circuits IIS. Available at: https://www.scs.fraunhofer.de/de/forschungsfelder/supply-chain-ai.html [Accessed: 27 May 2025].
Göpfert, I. & Braun, A. (2021) Logistics of the Future: Intelligent Systems in Practice. Berlin: Springer Vieweg.
Hofmann, E. & Rüsch, M. (2017) 'Industry 4.0 and the current status as well as prospects on logistics', Computers in Industry, 89, pp. 23-34.
IPH Hannover (n.d.) Logistics 4.0: Definition, goals, challenges. https://www.iph-hannover.de/de/dienstleistungen/digitalisierung/logistik-4.0/ [Accessed: 28 May 2025].
Ivanov, D., Dolgui, A. and Sokolov, B. (2019) 'The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics', International Journal of Production Research, 57(3), pp. 829-846.
Karl, A. (2021). How Zalando uses AI to make your shopping experience better. https://www.karlsnotes.com/how-zalando-uses-ai-to-make-your-shopping-experience-better/ [Accessed: 27 May 2025].
Kaur, M. & Kang, S. (2016). Market Basket Analysis: Identify the Changing Trends of Market Data Using Association Rule Mining. Procedia Computer Science, 85, 78-85.
Klumpp, M. (2018) 'Automation and artificial intelligence in business logistics systems: Human reactions and collaboration requirements', International Journal of Logistics Research and Applications, 21(3), pp. 224-242.
Linoff, G. S.& Berry, M. J. A. (2011). Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management. 3rd edn. Indianapolis: Wiley.
Min, H. (2010) 'Artificial intelligence in supply chain management: theory and applications', International Journal of Logistics Research and Applications, 13(1), pp. 13-39.
Moch, E. (2024a). Liability Issues in the Context of Artificial Intelligence: Legal Challenges and Solutions for AI-Supported Decisions. East African Journal of Law and Ethics, 7(1), 214-234.
Moch, E. (2024b). The Fourth Industrial Revolution and Its Impacts on Production Processes and Efficiency Enhancements Through Automation and Data Networking. East African Journal of Business and Economics, 7(1), 370-378. https://doi.org/10.37284/eajbe.7.1.2109
Ngai, E. W. T., Chau, D. C. K. & Chan, T. L. A. (2009) 'Information technology, operational, and management competencies for supply chain agility: Findings from case studies', Journal of Strategic Information Systems, 18(2), pp. 70-83.
Perrow, C. (1984) Normal Accidents: Living with High-Risk Technologies. Princeton: Princeton University Press.
Ren, S., Zhang, Y., Liu, Y., Sakao, T., Huisingh, D. and Almeida, C. M. V. B. (2018). A comprehensive review of big data analytics throughout the product lifecycle to support sustainable smart manufacturing: A framework, challenges and future research directions. Journal of Cleaner Production, 210, 1343-1365.
Russell, S. & Norvig, P. (2020) Artificial Intelligence: A Modern Approach. 4th edn. Harlow: Pearson.
Tan, P. N., Steinbach, M. & Kumar, V. (2018). Introduction to Data Mining. 2nd edn. Boston: Pearson.
Tichy, G. (2020) 'Zur Prognostizierbarkeit von Krisen', WIFO Monatsberichte, 3, pp. 215-225. https://www.wifo.ac.at/wp- content/uploads/upload-5913/mb_2020_03_04_krisen_-3.pdf [Accessed: 27 May 2025].
Uddin, M., Anowar, S. & Eluru, N. (2024) 'Modelling freight mode choice using machine learning classifiers: A comparative study using the Commodity Flow Survey (CFS) data', arXiv preprint, [arXiv:2402.00659]. https://arxiv.org/abs/2402.00659 [Accessed: 27 May 2025].
Verma, S., Agarwal, R.& Choudhary, A. (2020) 'Challenges in data-driven retail logistics: Algorithmic biases and decision support implications', Journal of Business Logistics, 41(2), pp. 95-111.
Voigt, P. &Von dem Bussche, A. (2017) The EU General Data Protection Regulation (GDPR): A Practical Guide. Cham: Springer International Publishing.
Wachter, S., Mittelstadt, B. & Floridi, L. (2017) 'Why a right to explanation of automated decision-making does not exist in the General Data Protection Regulation', International Data Privacy Law, 7(2), pp. 76-99.
Wang, G., Gunasekaran, A., Ngai, E. W. T. & Papadopoulos, T. (2016) 'Big data analytics in logistics and supply chain management: Certain investigations for research and applications', International Journal of Production Economics, 176, pp. 98-110.
Winkelmann, A., Klein, R. & Laux, H. (2020) Informationssysteme in der Logistik: Architekturen - Anwendungen - Instrumente. Munich: Vahlen.
Zalando SE (2022) Annual Report 2021/2022. Berlin: Zalando SE. https://corporate.zalando.com [Accessed: 27 May 2025].
Zarandi, M. H. F., Turksen, I. B., Mansour, S. & Avazbeigi, M. (2011) 'Logistics and supply chain management based on fuzzy decision making: An overview', Computers & Industrial Engineering, 62(1), pp. 1-16.
Zuboff, S. (2019). The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power. New York: Public Affairs.
Copyright (c) 2025 Burak Elkilic

This work is licensed under a Creative Commons Attribution 4.0 International License.