Explainable AI for Transparent and Trustworthy Tuberculosis Diagnosis: From Mere Pixels to Actionable Insights
Abstract
Building transparent and trustworthy AI-powered systems for disease diagnosis has become more paramount than ever due to a lack of understanding of black box models. A lack of transparency and explainability in AI-driven models can propagate biases and erode patients' and medical practitioners' trust. To answer this challenge, Explainable AI (XAI) is drastically emerging as a practical solution and approach to tackling ethical concerns in the health sector. The overarching purpose of this paper is to highlight the advancement in XAI for tuberculosis diagnosis (TB) and identify the benefits and challenges associated with improved trust in AI-powered TB diagnosis. We explore the potential of XAI in improving TB diagnosis. We attempt to provide a complete plan to promote XAI. We examine the significant problems associated with using XAI in TB diagnosis. We argue that XAI is critical for reliable TB diagnosis by improving the interpretability of AI decision-making processes and recognising possible biases and mistakes. We evaluate techniques and methods for XAI in TB diagnosis and examine the ethical and societal ramifications. By leveraging explainable AI, we can create a more reliable and trustworthy TB diagnostic framework, ultimately improving patient outcomes and global health. Finally, we provide thorough recommendations for developing and implementing XAI in TB diagnosis using X-ray imaging
Downloads
References
Acharya, V., Choi, D., Yener, B., & Beamer, G. (2024). Prediction of Tuberculosis From Lung Tissue Images of Diversity Outbred Mice Using Jump Knowledge Based Cell Graph Neural Network. IEEE Access, 12, 17164– 17194. https://doi.org/10.1109/ACCESS.2024.3359989
Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access, 6, 52138–52160.
Ahmad, H. K., Milne, M. R., Buchlak, Q. D., Ektas, N., Sanderson, G., Chamtie, H., Karunasena, S., Chiang, J., Holt, X., Tang, C. H. M., Seah, J. C. Y., Bottrell, G., Esmaili, N., Brotchie, P., & Jones, C. (2023). Machine Learning Augmented Interpretation of Chest X-rays: A Systematic Review. Diagnostics, 13(4), 743. https://doi.org/10.3390/diagnostics13040743
Ali, S., Akhlaq, F., Imran, A. S., Kastrati, Z., Daudpota, S. M., & Moosa, M. (2023). The enlightening role of explainable artificial intelligence in medical & healthcare domains: A systematic literature review. Computers in Biology and Medicine, 166, 107555. https://doi.org/10.1016/j.compbiomed.2023.107555
Ameen, Z. S., Saleh Mubarak, A., Altrjman, C., Alturjman, S., & Abdulkadir, R. A. (2021). Explainable Residual Network for Tuberculosis Classification in the IoT Era. 2021 International Conference on Forthcoming Networks and Sustainability in AIoT Era (FoNeS-AIoT), 9–12. https://doi.org/10.1109/FoNeS-AIoT54873.2021.00012
Aranovich, T. de C., & Matulionyte, R. (2023). Ensuring AI explainability in healthcare: Problems and possible policy solutions. Information & Communications Technology Law, 32(2), 259– 275. https://doi.org/10.1080/13600834.2022.2146395
Bhandari, M., Shahi, T. B., Siku, B., & Neupane, A. (2022). Explanatory classification of CXR images into COVID-19, Pneumonia and Tuberculosis using deep learning and XAI. Computers in Biology and Medicine, 150, 106156. https://doi.org/10.1016/j.compbiomed.2022.106156
Chadaga, K., Prabhu, S., Bhat, V., Sampathila, N., Umakanth, S., Chadaga, R., Shashi Kumar, G. S., & Swathi, K. S. (2023). An explainable multi-class decision support framework to predict COVID-19 prognosis utilizing biomarkers. Cogent Engineering, 10(2), 2272361. https://doi.org/10.1080/23311916.2023.2272361
Chaddad, A., Peng, J., Xu, J., & Bouridane, A. (2023). Survey of Explainable AI Techniques in Healthcare. Sensors, 23(2), Article 2. https://doi.org/10.3390/s23020634
Chamola, V., Hassija, V., Sulthana, A. R., Ghosh, D., Dhingra, D., & Sikdar, B. (2023). A Review of Trustworthy and Explainable Artificial Intelligence (XAI). IEEE Access, 11, 78994– 79015. https://doi.org/10.1109/ACCESS.2023.3294569
Codlin, A. J., Vo, L. N. Q., Garg, T., Banu, S., Ahmed, S., John, S., Abdulkarim, S., Muyoyeta, M., Sanjase, N., & Wingfield, T. (2024). Expanding molecular diagnostic coverage for tuberculosis by combining computer-aided chest radiography and sputum specimen pooling: A modeling study from four high burden countries. https://www.researchsquare.com/article/rs-3813705/latest
Dagnaw, G. H., & Mouthadi, M. E. (2023a). Towards Explainable Artificial Intelligence for Pneumonia and Tuberculosis Classification from Chest X-Ray. 2023 International Conference on Information and Communication Technology for Development for Africa (ICT4DA), 55–60. https://doi.org/10.1109/ICT4DA59526.2023.10302183
Dagnaw, G. H., & Mouthadi, M. E. (2023b). Towards Explainable Artificial Intelligence for Pneumonia and Tuberculosis Classification from Chest X-Ray. 2023 International Conference on Information and Communication Technology for Development for Africa (ICT4DA), 55–60. https://doi.org/10.1109/ICT4DA59526.2023.10302183
De Farias Gabriel, A., Kirschnick, L. B., Só, B. B., Schuch, L. F., Silveira, F. M., Martins, M. A. T., Wagner, V. P., Lopes, M. A., & Martins, M. D. (2023). Oral and maxillofacial tuberculosis: A systematic review. Oral Diseases, 29(7), 2483–2492. https://doi.org/10.1111/odi.14290
Dosilovic, F. K., Brcic, M., & Hlupic, N. (2018). Explainable artificial intelligence: A survey. 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 0210– 0215. https://doi.org/10.23919/MIPRO.2018.8400040
Gurmessa, D. K., & Jimma, W. (2023). A comprehensive evaluation of explainable Artificial Intelligence techniques in stroke diagnosis: A systematic review. Cogent Engineering, 10(2), 2273088. https://doi.org/10.1080/23311916.2023.2273088
Hansun, S., Argha, A., Liaw, S.-T., Celler, B. G., & Marks, G. B. (2023a). Machine and Deep Learning for Tuberculosis Detection on Chest X-Rays: Systematic Literature Review. Journal of Medical Internet Research, 25, e43154. https://doi.org/10.2196/43154
Hansun, S., Argha, A., Liaw, S.-T., Celler, B. G., & Marks, G. B. (2023b). Machine and Deep Learning for Tuberculosis Detection on Chest X-Rays: Systematic Literature Review. Journal of Medical Internet Research, 25, e43154. https://doi.org/10.2196/43154
Hansun, S., Argha, A., Liaw, S.-T., Celler, B. G., & Marks, G. B. (2023c). Machine and Deep Learning for Tuberculosis Detection on Chest X-Rays: Systematic Literature Review. Journal of Medical Internet Research, 25, e43154. https://doi.org/10.2196/43154
Huang, C., Wang, W., Zhang, X., Wang, S.-H., & Zhang, Y.-D. (2023). Tuberculosis Diagnosis Using Deep Transferred EfficientNet. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 20(5), 2639–2646. https://doi.org/10.1109/TCBB.2022.3199572
Hwang, E. J., Jeong, W. G., David, P.-M., Arentz, M., Ruhwald, M., & Yoon, S. H. (2024). AI for detection of tuberculosis: Implications for global health. Radiology: Artificial Intelligence, 6(2), e230327.
Ifty, T. T., Shafin, S. A., Shahriar, S. M., & Towhid, T. (2024). Explainable Lung Disease Classification from Chest X-Ray Images Utilizing Deep Learning and XAI (arXiv:2404.11428). arXiv. http://arxiv.org/abs/2404.11428
Jegatheeswaran, T., Kumaralingam, L., Selvarajah, S., & Ratnarajah, N. (2024). Explainable Hybrid CNN Swin-Transformer Network for Tuberculosis Diagnosis in Chest X-Rays of Sri Lankan Patients. 2024 4th International Conference on Advanced Research in Computing (ICARC), 85–90. https://doi.org/10.1109/ICARC61713.2024.10499756
Kaplan, S., Uusitalo, H., & Lensu, L. (2024). A unified and practical user-centric framework for explainable artificial intelligence. Knowledge-Based Systems, 283, 111107. https://doi.org/10.1016/j.knosys.2023.111107
Kontsevaya, I., Cabibbe, A. M., Cirillo, D. M., DiNardo, A. R., Frahm, N., Gillespie, S. H., Holtzman, D., Meiwes, L., Petruccioli, E., & Reimann, M. (2023). Update on the diagnosis of tuberculosis. Clinical Microbiology and Infection. https://www.sciencedirect.com/science/article/pii/S1198743X23003403
Koyyada, S. P., & Singh, T. P. (2023). An explainable artificial intelligence model for identifying local indicators and detecting lung disease from chest X-ray images. Healthcare Analytics, 4, 100206. https://doi.org/10.1016/j.health.2023.100206
Krishnamoorthy, T. V., Venkataiah, C., Rao, Y. M., Prasad, D. R., Chowdary, K. U., Jayamma, M., & Sireesha, R. (2024). A novel NASNet model with LIME explanability for lung disease classification. Biomedical Signal Processing and Control, 93, 106114. https://doi.org/10.1016/j.bspc.2024.106114
Kumar, S., Bhagat, V., Sahu, P., Chaube, M. K., Behera, A. K., Guizani, M., Gravina, R., Di Dio, M., Fortino, G., Curry, E., & Alsamhi, S. H. (2024). A novel multimodal framework for early diagnosis and classification of COPD based on CT scan images and multivariate pulmonary respiratory diseases. Computer Methods and Programs in Biomedicine, 243, 107911. https://doi.org/10.1016/j.cmpb.2023.107911
Larasati, R. (2023). Trust and explanation in Artificial Intelligence systems: A healthcare application in disease detection and preliminary diagnosis [PhD Thesis, The Open University]. https://oro.open.ac.uk/88778/
Longo, L., Brcic, M., Cabitza, F., Choi, J., Confalonieri, R., Ser, J. D., Guidotti, R., Hayashi, Y., Herrera, F., Holzinger, A., Jiang, R., Khosravi, H., Lecue, F., Malgieri, G., Páez, A., Samek, W., Schneider, J., Speith, T., & Stumpf, S. (2024). Explainable Artificial Intelligence (XAI) 2.0: A manifesto of open challenges and interdisciplinary research directions. Information Fusion, 106, 102301. https://doi.org/10.1016/j.inffus.2024.102301
Maheswari, B. U. (2024). Explainable deep-neural-network supported scheme for tuberculosis detection from chest radiographs.
Malik, H., Anees, T., Al-Shamaylehs, A. S., Alharthi, S. Z., Khalil, W., & Akhunzada, A. (2023). Deep Learning-Based Classification of Chest Diseases Using X-rays, CTScans, and Cough Sound Images. Diagnostics (Basel, Switzerland), 13(17), 2772. https://doi.org/10.3390/diagnostics13172772
Mamalakis, M., Dwivedi, K., Sharkey, M., Alabed, S., Kiely, D., & Swift, A. J. (2023). A transparent artificial intelligence framework to assess lung disease in pulmonary hypertension. Scientific Reports, 13(1), 3812. https://doi.org/10.1038/s41598-023-30503-4
Marvin, G., & Alam, Md. G. R. (2022). Explainable Augmented Intelligence and Deep Transfer Learning for Pediatric Pulmonary Health Evaluation. 2022 International Conference on Innovations in Science, Engineering and Technology (ICISET), 272– 277. https://doi.org/10.1109/ICISET54810.2022.9775845
Mera, H. B., Wagnew, F., Akelew, Y., Hibstu, Z., Berihun, S., Tamir, W., Alemu, S., Lamore, Y., Mesganaw, B., & Adugna, A. (2023). Prevalence and Predictors of Pulmonary Tuberculosis among Prison Inmates in Sub-Saharan Africa: A Systematic Review and Meta-Analysis. Tuberculosis Research and Treatment, 2023. https://www.hindawi.com/journals/trt/2023/6226200/
Mi, J.-X., Jiang, X., Luo, L., & Gao, Y. (2024). Toward explainable artificial intelligence: A survey and overview on their intrinsic properties. Neurocomputing, 563, 126919. https://doi.org/10.1016/j.neucom.2023.126919
Miró-Nicolau, M., Moyà-Alcover, G., & Jaume-i-Capó, A. (2022). Evaluating Explainable Artificial Intelligence for X-ray Image Analysis. Applied Sciences, 12(9), 4459. https://doi.org/10.3390/app12094459
Mota Carvalho, T. F., Santos, V. L. A., Silva, J. C. F., Figueredo, L. J. D. A., De Miranda, S. S., Duarte, R. D. O., & Guimarães, F. G. (2023). A systematic review and repeatability study on the use of deep learning for classifying and detecting tuberculosis bacilli in microscopic images. Progress in Biophysics and Molecular Biology, 180– 181, 1– 18. https://doi.org/10.1016/j.pbiomolbio.2023.03.002
Murugesan, S. S., Velu, S., Golec, M., Wu, H., & Gill, S. S. (2024). Neural Networks based Smart e-Health Application for the Prediction of Tuberculosis using Serverless Computing. IEEE Journal of Biomedical and Health Informatics, 1–12. https://doi.org/10.1109/JBHI.2024.3367736
Naz, Z., Khan, M. U. G., Saba, T., Rehman, A., Nobanee, H., & Bahaj, S. A. (2023). An Explainable AI-Enabled Framework for Interpreting Pulmonary Diseases from Chest Radiographs. Cancers, 15(1), 314. https://doi.org/10.3390/cancers15010314
Okada, K., Yamada, N., Takayanagi, K., Hiasa, Y., Kitamura, Y., Hoshino, Y., Hirao, S., Yoshiyama, T., Onozaki, I., & Kato, S. (2024). Applicability of artificial intelligence-based computer-aided detection (AI–CAD) for pulmonary tuberculosis to community-based active case finding. Tropical Medicine and Health, 52(1), 2.
Panagoulias, D. P., Virvou, M., & Tsihrintzis, G. A. (2024). A novel framework for artificial intelligence explainability via the Technology Acceptance Model and Rapid Estimate of Adult Literacy in Medicine using machine learning. Expert Systems with Applications, 248, 123375. https://doi.org/10.1016/j.eswa.2024.123375
Patel, A. N., Murugan, R., Srivastava, G., Maddikunta, P. K. R., Yenduri, G., Gadekallu, T. R., & Chengoden, R. (2024). An explainable transfer learning framework for multi-classification of lung diseases in chest X-rays. Alexandria Engineering Journal, 98, 328– 343. https://doi.org/10.1016/j.aej.2024.04.072
Patrício, C., Neves, J. C., & Teixeira, L. F. (2023). Explainable Deep Learning Methods in Medical Image Classification: A Survey (arXiv:2205.04766). arXiv. http://arxiv.org/abs/2205.04766
Raif, P., Suchanek-Raif, R., & Tkacz, E. (2023). Explainable AI (XAI) in Healthcare—Tools and Regulations. 2023 IEEE EMBS Special Topic Conference on Data Science and Engineering in Healthcare, Medicine and Biology, 151– 152. https://doi.org/10.1109/IEEECONF58974.2023.10405096
Sachan, A., Kakadiya, R., Mishra, S., Kumar‐M, P., Jena, A., Gupta, P., Sebastian, S., Deepak, P., & Sharma, V. (2024). Artificial intelligence for discrimination of Crohn’s disease and gastrointestinal tuberculosis: A systematic review. Journal of Gastroenterology and Hepatology, 39(3), 422–430. https://doi.org/10.1111/jgh.16430
Sheu, R.-K., Pardeshi, M. S., Pai, K.-C., Chen, L.-C., Wu, C.-L., & Chen, W.-C. (2023). Interpretable Classification of Pneumonia Infection Using eXplainable AI (XAI-ICP). IEEE Access, 11, 28896– 28919. https://doi.org/10.1109/ACCESS.2023.3255403
Tang, N., Yuan, M., Chen, Z., Ma, J., Sun, R., Yang, Y., He, Q., Guo, X., Hu, S., & Zhou, J. (2023). Machine Learning Prediction Model of Tuberculosis Incidence Based on Meteorological Factors and Air Pollutants. International Journal of Environmental Research and Public Health, 20(5), 3910. https://doi.org/10.3390/ijerph20053910
Tchuente, D., Lonlac, J., & Kamsu-Foguem, B. (2024). A methodological and theoretical framework for implementing explainable artificial intelligence (XAI) in business applications. Computers in Industry, 155, 104044. https://doi.org/10.1016/j.compind.2023.104044
V, J. P., & S, A. A. V. (2024). A multi-aspect framework for explainable sentiment analysis. Pattern Recognition Letters, 178, 122– 129. https://doi.org/10.1016/j.patrec.2024.01.001
Van Der Velden, B. H. M., Kuijf, H. J., Gilhuijs, K. G. A., & Viergever, M. A. (2022). Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Medical Image Analysis, 79, 102470. https://doi.org/10.1016/j.media.2022.102470
Weng, F., Meng, Y., Lu, F., Wang, Y., Wang, W., Xu, L., Cheng, D., & Zhu, J. (2022). Differentiation of intestinal tuberculosis and Crohn’s disease through an explainable machine learning method. Scientific Reports, 12(1), 1714. https://doi.org/10.1038/s41598-022-05571-7
Yadav, P. (2023). Challenges & Solutions for Recent Advancements in Multi-Drugs Resistance Tuberculosis: A Review. Microbiology Insights, 16, 117863612311524. https://doi.org/10.1177/11786361231152438
Copyright (c) 2024 Tibakanya Joseph, Male Henry Kenneth, Nakasi Rose

This work is licensed under a Creative Commons Attribution 4.0 International License.