AI Methods and Algorithms for Diagnosis of Intestinal Parasites: Applications, Challenges and Future Opportunities

  • Male Henry Kenneth Makerere University
  • Tibakanya Joseph Makerere University
  • Nakasi Rose Makerere University
Keywords: Artificial Intelligence, Intestinal Parasites Diagnosis, Computer Vision, Deep Learning
Share Article:

Abstract

Artificial intelligence (AI) transforms intestinal parasite diagnosis, particularly through deep learning models like convolutional neural networks (CNNs). This paper reviews the application of AI, especially CNNs, in automating parasite detection and classification from microscopic images. Integrating AI into parasitology diagnostics speeds up the process, reduces human error, and enhances treatment and patient outcomes. However, there is a need for more datasets reflecting the African context to ensure accurate ground-truthing, particularly in low- and middle-income countries (LMICs) across Africa. Most AI models for medical diagnosis are trained on datasets from high-income countries, which may not capture the unique epidemiological, genetic, and environmental factors prevalent in African populations. This can lead to less accurate diagnoses and treatment recommendations in African LMICs. For example, intestinal parasitic infections are common in many African regions, yet the datasets used to train AI models often lack sufficient representation from these areas. Developing datasets that reflect the diverse African context is crucial for improving the accuracy and reliability of AI-based diagnostic tools. Issues like overfitting, data privacy, and cost also require attention. Collaboration between researchers, healthcare professionals, and technologists is essential to address these challenges. Standardized protocols for data collection, model training, and validation are necessary for reliable AI systems. Combining AI with traditional techniques holds promise for better parasite diagnosis, ultimately improving African healthcare outcomes

Downloads

Download data is not yet available.

References

Alsaade, F. W., Aldhyani, T. H. H., & Al-Adhaileh, M. H. (2021). Developing a Recognition System for Diagnosing Melanoma Skin Lesions Using Artificial Intelligence Algorithms. Computational and Mathematical Methods in Medicine, 2021, 9998379. https://doi.org/10.1155/2021/9998379

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1), 53. https://doi.org/10.1186/s40537-021-00444-8

Chauhan, T., Palivela, H., & Tiwari, S. (2021). Optimization and fine-tuning of DenseNet model for classification of COVID-19 cases in medical imaging. International Journal of Information Management Data Insights, 1(2), 100020. https://doi.org/10.1016/j.jjimei.2021.100020

Chowdhury, A., Rosenthal, J., Waring, J., & Umeton, R. (2021). Applying Self-Supervised Learning to Medicine: Review of the State of the Art and Medical Implementations. Informatics, 8(3), Article 3. https://doi.org/10.3390/informatics8030059

Cringoli, G., Amadesi, A., Maurelli, M. P., Celano, B., Piantadosi, G., Bosco, A., Ciuca, L., Cesarelli, M., Bifulco, P., Montresor, A., & Rinaldi, L. (2021). The Kubic FLOTAC microscope (KFM): A new compact digital microscope for helminth egg counts. Parasitology, 148(4), 427–434. https://doi.org/10.1017/S003118202000219X

Dahal, P., Khanal, B., Rai, K., Kattel, V., Yadav, S., & Bhattarai, N. R. (2021). Challenges in Laboratory Diagnosis of Malaria in a Low-Resource Country at Tertiary Care in Eastern Nepal: A Comparative Study of Conventional vs. Molecular Methodologies. Journal of Tropical Medicine, 2021(1), 3811318. https://doi.org/10.1155/2021/3811318

Eyayu, T., Kiros, T., Workineh, L., Sema, M., Damtie, S., Hailemichael, W., Dejen, E., & Tiruneh, T. (2021). Prevalence of intestinal parasitic infections and associated factors among patients attending at Sanja Primary Hospital, Northwest Ethiopia: An institutional-based cross-sectional study. PLoS ONE, 16(2), e0247075. https://doi.org/10.1371/journal.pone.0247075

Hmoud Al-Adhaileh, M., Mohammed Senan, E., Alsaade, F. W., Aldhyani, T. H. H., Alsharif, N., Abdullah Alqarni, A., Uddin, M. I., Alzahrani, M. Y., Alzain, E. D., & Jadhav, M. E. (2021). Deep Learning Algorithms for Detection and Classification of Gastrointestinal Diseases. Complexity, 2021, 1–12. https://doi.org/10.1155/2021/6170416

Huang, S.-C., Pareek, A., Jensen, M., Lungren, M. P., Yeung, S., & Chaudhari, A. S. (2023). Self-supervised learning for medical image classification: A systematic review and implementation guidelines. NPJ Digital Medicine, 6(1), 74. https://doi.org/10.1038/s41746-023-00811-0

Inácio, S. V., Ferreira Gomes, J., Xavier Falcão, A., Nagase Suzuki, C. T., Bertequini Nagata, W., Nery Loiola, S. H., Martins dos Santos, B., Soares, F. A., Rosa, S. L., Baptista, C. B., Borges Alves, G., & Saraiva Bresciani, K. D. (2020). Automated Diagnosis of Canine Gastrointestinal Parasites Using Image Analysis. Pathogens, 9(2), Article 2. https://doi.org/10.3390/pathogens9020139

Ji, S.-J., Ling, Q.-H., & Han, F. (2023). An improved algorithm for small object detection based on YOLO v4 and multi-scale contextual information. Computers and Electrical Engineering, 105, 108490. https://doi.org/10.1016/j.compeleceng.2022.108490

Jomtarak, R., Kittichai, V., Kaewthamasorn, M., Thanee, S., Arnuphapprasert, A., Naing, K. M., Tongloy, T., Boonsang, S., & Chuwongin, S. (2023). Mobile Bot Application for Identification of Trypanosoma evansi Infection through Thin-Blood Film Examination Based on Deep Learning Approach. 2023 IEEE International Conference on Cybernetics and Innovations (ICCI), 1– 7. https://doi.org/10.1109/ICCI57424.2023.10112327

Khairudin, N. A. A., Nasir, A. S. A., Chin, L. C., Jaafar, H., & Mohamed, Z. (2021). A Fast and Efficient Segmentation of Soil-Transmitted Helminths Through Various Color Models and k-Means Clustering. In Z. Md Zain, H. Ahmad, D. Pebrianti, M. Mustafa, N. R. H. Abdullah, R. Samad, & M. Mat Noh (Eds.), Proceedings of the 11th National Technical Seminar on Unmanned System Technology 2019 (pp. 555–576). Springer Nature. https://doi.org/10.1007/978-981-15-5281-6_39

Koh, J. E. W., De Michele, S., Sudarshan, V. K., Jahmunah, V., Ciaccio, E. J., Ooi, C. P., Gururajan, R., Gururajan, R., Oh, S. L., Lewis, S. K., Green, P. H., Bhagat, G., & Acharya, U. R. (2021). Automated interpretation of biopsy images for the detection of celiac disease using a machine learning approach. Computer Methods and Programs in Biomedicine, 203, 106010. https://doi.org/10.1016/j.cmpb.2021.106010

Kumar, S., Arif, T., Ahamad, G., Chaudhary, A. A., Khan, S., & Ali, M. A. M. (2023). An Efficient and Effective Framework for Intestinal Parasite Egg Detection Using YOLOv5.

Kumar, S., Arif, T., Alotaibi, A. S., Malik, M. B., & Manhas, J. (2023). Advances Towards Automatic Detection and Classification of Parasites Microscopic Images Using Deep Convolutional Neural Network: Methods, Models and Research Directions. Archives of Computational Methods in Engineering, 30(3), 2013– 2039. https://doi.org/10.1007/s11831-022-09858-w

Kumar, S., Harmanci, A., Vytheeswaran, J., & Gerstein, M. B. (2020). SVFX: A machine learning framework to quantify the pathogenicity of structural variants. Genome Biology, 21(1), 274. https://doi.org/10.1186/s13059-020-02178-x

Lee, Y. W., Choi, J. W., & Shin, E.-H. (2021). Machine learning model for diagnostic method prediction in parasitic disease using clinical information. Expert Systems with Applications, 185, 115658. https://doi.org/10.1016/j.eswa.2021.115658

Lim, C. C., Khairudin, N. A. A., Loke, S. W., Nasir, A. S. A., Chong, Y. F., & Mohamed, Z. (2022). Comparison of Human Intestinal Parasite Ova Segmentation Using Machine Learning and Deep Learning Techniques. Applied Sciences, 12(15), 7542. https://doi.org/10.3390/app12157542

Liu, Y.-X., Qin, Y., Chen, T., Lu, M., Qian, X., Guo, X., & Bai, Y. (2021). A practical guide to amplicon and metagenomic analysis of microbiome data. Protein & Cell, 12(5), 315–330. https://doi.org/10.1007/s13238-020-00724-8

Marques, G., Ferreras, A., & de la Torre-Diez, I. (2022). An ensemble-based approach for automated medical diagnosis of malaria using EfficientNet. Multimedia Tools and Applications, 81(19), 28061–28078. https://doi.org/10.1007/s11042-022-12624-6

Mota Carvalho, T. F., Santos, V. L. A., Silva, J. C. F., Figueredo, L. J. de A., de Miranda, S. S., Duarte, R. de O., & Guimarães, F. G. (2023). A systematic review and repeatability study on the use of deep learning for classifying and detecting tuberculosis bacilli in microscopic images. Progress in Biophysics and Molecular Biology, 180–181, 1–18. https://doi.org/10.1016/j.pbiomolbio.2023.03.002

Nakasi, R., Aliija, E. R., & Nakatumba, J. (2021). A Poster on Intestinal Parasite Detection in Stool Sample Using AlexNet and GoogleNet Architectures. Proceedings of the 4th ACM SIGCAS Conference on Computing and Sustainable Societies, 389–395. https://doi.org/10.1145/3460112.3472309

Nakasi, R., Mwebaze, E., & Zawedde, A. (2021). Mobile-Aware Deep Learning Algorithms for Malaria Parasites and White Blood Cells Localization in Thick Blood Smears. Algorithms, 14(1), Article 1. https://doi.org/10.3390/a14010017

Nakasi, R., Mwebaze, E., Zawedde, A., Tusubira, J., Akera, B., & Maiga, G. (2020). A new approach for microscopic diagnosis of malaria parasites in thick blood smears using pre-trained deep learning models. SN Applied Sciences, 2(7), 1255. https://doi.org/10.1007/s42452-020-3000-0

Nasir, A. S. A., Jaafar, H., Mustafa, W. A. W., & Mohamed, Z. (2018). The Cascaded Enhanced k-Means and Fuzzy c-Means Clustering Algorithms for Automated Segmentation of Malaria Parasites. MATEC Web of Conferences, 150, 06037. https://doi.org/10.1051/matecconf/201815006037

Nasir, A. S. A., Khairudin, N. A. A., Chin, L. C., Aris, T. A., & Mohamed, Z. (2021). Enhanced $k$-Means Clustering Algorithm for Detection of Human Intestinal Parasites. 2020 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), 372–377. https://doi.org/10.1109/IECBES48179.2021.9398801

Osaku, D., Cuba, C. F., Suzuki, C. T. N., Gomes, J. F., & Falcão, A. X. (2020). Automated diagnosis of intestinal parasites: A new hybrid approach and its benefits. Computers in Biology and Medicine, 123, 103917. https://doi.org/10.1016/j.compbiomed.2020.103917

Parija, S. C., & Poddar, A. (2024). Artificial intelligence in parasitic disease control: A paradigm shift in health care. Tropical Parasitology, 14(1), 2–7. https://doi.org/10.4103/tp.tp_66_23

Punsawad, C., Phasuk, N., Thongtup, K., Nagavirochana, S., & Viriyavejakul, P. (2023). Prevalence of parasitic contamination of raw vegetables in Nakhon Si Thammarat province, southern Thailand. BMC Public Health, 19(1), 34. https://doi.org/10.1186/s12889-018-6358-9

Ruenchit, P. (2021). State-of-the-Art Techniques for Diagnosis of Medical Parasites and Arthropods. Diagnostics, 11(9), 1545. https://doi.org/10.3390/diagnostics11091545

Salvi, M., Acharya, U. R., Molinari, F., & Meiburger, K. M. (2021). The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis. Computers in Biology and Medicine, 128, 104129. https://doi.org/10.1016/j.compbiomed.2020.104129

Senan, E. M., & Jadhav, M. E. (2021). Analysis of dermoscopy images by using ABCD rule for early detection of skin cancer. Global Transitions Proceedings, 2(1), 1–7. https://doi.org/10.1016/j.gltp.2021.01.001

Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. ArXiv. https://www.semanticscholar.org/paper/EfficientNet%3A- Rethinking- Model- Scaling- for- Neural- Tan- Le/4f2eda8077dc7a69bb2b4e0a1a086cf054adb3f9

Vangay, P., Hillmann, B. M., & Knights, D. (2019). Microbiome Learning Repo (ML Repo): A public repository of microbiome regression and classification tasks. GigaScience, 8(5), giz042. https://doi.org/10.1093/gigascience/giz042

Wan, D., Lu, R., Wang, S., Shen, S., Xu, T., & Lang, X. (2023). YOLO-HR: Improved YOLOv5 for Object Detection in High-Resolution Optical Remote Sensing Images. Remote Sensing, 15(3), Article 3. https://doi.org/10.3390/rs15030614

Zhang, C., Jiang, H., Jiang, H., Xi, H., Chen, B., Liu, Y., Juhas, M., Li, J., & Zhang, Y. (2022). Deep learning for microscopic examination of protozoan parasites. Computational and Structural Biotechnology Journal, 20, 1036–1043. https://doi.org/10.1016/j.csbj.2022.02.005

Zhang, Z., Cui, P., & Zhu, W. (2022). Deep Learning on Graphs: A Survey. IEEE Transactions on Knowledge and Data Engineering, 34(1), 249–270. IEEE Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2020.2981333

Published
8 October, 2024
How to Cite
Kenneth, M., Joseph, T., & Rose, N. (2024). AI Methods and Algorithms for Diagnosis of Intestinal Parasites: Applications, Challenges and Future Opportunities. East African Journal of Information Technology, 7(1), 366-379. https://doi.org/10.37284/eajit.7.1.2282